From f920c1ac15230d145ee4d34e9f5d6471c1a1b095 Mon Sep 17 00:00:00 2001 From: Chengzhu Xu <135884058+c2xu@users.noreply.github.com> Date: Mon, 9 Dec 2024 17:20:54 -0400 Subject: [PATCH] Inline harmonic analysis (#744) * Inline harmonic analysis Important bug fix: 1) The Cholesky decomposition was operating on entries below the main diagonal of FtF, whereas in the accumulator of FtF, only entries along and above the main diagonal were calculated. In this revision, I modified HA_accum_FtF so that entries below the main diagonal are accumulated instead. 2) In the accumulator of FtSSH, the first entry for the mean (zero frequency) is moved out of the loop over different tidal constituents, so that it is not accumulated multiple times within a single time step. * Inline harmonic analysis Another bug fix: initial state added back to the mean state. * Inline harmonic analysis Minor update to HA_solver --- src/diagnostics/MOM_harmonic_analysis.F90 | 103 ++++++++++++---------- 1 file changed, 55 insertions(+), 48 deletions(-) diff --git a/src/diagnostics/MOM_harmonic_analysis.F90 b/src/diagnostics/MOM_harmonic_analysis.F90 index 1e3b9895cb..0013a8ab83 100644 --- a/src/diagnostics/MOM_harmonic_analysis.F90 +++ b/src/diagnostics/MOM_harmonic_analysis.F90 @@ -173,6 +173,7 @@ end subroutine HA_register !> This subroutine accumulates the temporal basis functions in FtF. !! The tidal constituents are those used in MOM_tidal_forcing, plus the mean (of zero frequency). +!! Only the main diagonal and entries below it are calculated, which are needed for Cholesky decomposition. subroutine HA_accum_FtF(Time, CS) type(time_type), intent(in) :: Time !< The current model time type(harmonic_analysis_CS), intent(inout) :: CS !< Control structure of the MOM_harmonic_analysis module @@ -191,27 +192,31 @@ subroutine HA_accum_FtF(Time, CS) nc = CS%nc now = CS%US%s_to_T * time_type_to_real(Time - CS%time_ref) - ! Accumulate FtF - CS%FtF(1,1) = CS%FtF(1,1) + 1.0 !< For the zero frequency + !< First entry, corresponding to the zero frequency constituent (mean) + CS%FtF(1,1) = CS%FtF(1,1) + 1.0 + do c=1,nc icos = 2*c isin = 2*c+1 cosomegat = cos(CS%freq(c) * now + CS%phase0(c)) sinomegat = sin(CS%freq(c) * now + CS%phase0(c)) + + ! First column, corresponding to the zero frequency constituent (mean) CS%FtF(icos,1) = CS%FtF(icos,1) + cosomegat CS%FtF(isin,1) = CS%FtF(isin,1) + sinomegat - CS%FtF(1,icos) = CS%FtF(icos,1) - CS%FtF(1,isin) = CS%FtF(isin,1) - do cc=c,nc + + do cc=1,c iccos = 2*cc issin = 2*cc+1 ccosomegat = cos(CS%freq(cc) * now + CS%phase0(cc)) ssinomegat = sin(CS%freq(cc) * now + CS%phase0(cc)) + + ! Interior of the matrix, corresponding to the products of cosine and sine terms CS%FtF(icos,iccos) = CS%FtF(icos,iccos) + cosomegat * ccosomegat CS%FtF(icos,issin) = CS%FtF(icos,issin) + cosomegat * ssinomegat CS%FtF(isin,iccos) = CS%FtF(isin,iccos) + sinomegat * ccosomegat CS%FtF(isin,issin) = CS%FtF(isin,issin) + sinomegat * ssinomegat - enddo ! cc=c,nc + enddo ! cc=1,c enddo ! c=1,nc end subroutine HA_accum_FtF @@ -276,14 +281,18 @@ subroutine HA_accum_FtSSH(key, data, Time, G, CS) is = ha1%is ; ie = ha1%ie ; js = ha1%js ; je = ha1%je - ! Accumulate FtF and FtSSH + !< First entry, corresponding to the zero frequency constituent (mean) + do j=js,je ; do i=is,ie + ha1%FtSSH(i,j,1) = ha1%FtSSH(i,j,1) + (data(i,j) - ha1%ref(i,j)) + enddo ; enddo + + !< The remaining entries do c=1,nc icos = 2*c isin = 2*c+1 cosomegat = cos(CS%freq(c) * now + CS%phase0(c)) sinomegat = sin(CS%freq(c) * now + CS%phase0(c)) do j=js,je ; do i=is,ie - ha1%FtSSH(i,j,1) = ha1%FtSSH(i,j,1) + (data(i,j) - ha1%ref(i,j)) ha1%FtSSH(i,j,icos) = ha1%FtSSH(i,j,icos) + (data(i,j) - ha1%ref(i,j)) * cosomegat ha1%FtSSH(i,j,isin) = ha1%FtSSH(i,j,isin) + (data(i,j) - ha1%ref(i,j)) * sinomegat enddo ; enddo @@ -315,7 +324,7 @@ subroutine HA_write(ha1, Time, G, CS) ! Local variables real, dimension(:,:,:), allocatable :: FtSSHw !< An array containing the harmonic constants [A] integer :: year, month, day, hour, minute, second - integer :: nc, k, is, ie, js, je + integer :: nc, i, j, k, is, ie, js, je character(len=255) :: filename !< Output file name type(MOM_infra_file) :: cdf !< The file handle for output harmonic constants @@ -348,6 +357,11 @@ subroutine HA_write(ha1, Time, G, CS) call create_MOM_file(cdf, trim(filename), cdf_vars, & 2*nc+1, cdf_fields, SINGLE_FILE, 86400.0, G=G) + ! Add the initial field back to the mean state + do j=js,je ; do i=is,ie + FtSSHw(i,j,1) = FtSSHw(i,j,1) + ha1%ref(i,j) + enddo ; enddo + ! Write data call MOM_write_field(cdf, cdf_fields(1), G%domain, FtSSHw(:,:,1), 0.0) do k=1,nc @@ -362,75 +376,68 @@ subroutine HA_write(ha1, Time, G, CS) end subroutine HA_write -!> This subroutine computes the harmonic constants (stored in FtSSHw) using the dot products of the temporal +!> This subroutine computes the harmonic constants (stored in x) using the dot products of the temporal !! basis functions accumulated in FtF, and the dot products of the SSH (or other fields) with the temporal basis !! functions accumulated in FtSSH. The system is solved by Cholesky decomposition, !! -!! FtF * FtSSHw = FtSSH, => FtFw * (FtFw' * FtSSHw) = FtSSH, +!! FtF * x = FtSSH, => L * (L' * x) = FtSSH, => L * y = FtSSH, !! -!! where FtFw is a lower triangular matrix, and the prime denotes matrix transpose. +!! where L is the lower triangular matrix, y = L' * x, and x is the solution vector. !! -subroutine HA_solver(ha1, nc, FtF, FtSSHw) +subroutine HA_solver(ha1, nc, FtF, x) type(HA_type), pointer, intent(in) :: ha1 !< Control structure for the current field integer, intent(in) :: nc !< Number of harmonic constituents real, dimension(:,:), intent(in) :: FtF !< Accumulator of (F' * F) for all fields [nondim] - real, dimension(:,:,:), allocatable, intent(out) :: FtSSHw !< Work array for Cholesky decomposition [A] + real, dimension(ha1%is:ha1%ie,ha1%js:ha1%je,2*nc+1), & + intent(out) :: x !< Solution vector of harmonic constants [A] ! Local variables - real :: tmp0 !< Temporary variable for Cholesky decomposition [nondim] - real, dimension(:), allocatable :: tmp1 !< Temporary variable for Cholesky decomposition [nondim] - real, dimension(:,:), allocatable :: tmp2 !< Temporary variable for Cholesky decomposition [A] - real, dimension(:,:), allocatable :: FtFw !< Lower triangular matrix for Cholesky decomposition [nondim] - integer :: k, m, n, is, ie, js, je - - is = ha1%is ; ie = ha1%ie ; js = ha1%js ; je = ha1%je - - allocate(tmp1(1:2*nc+1), source=0.0) - allocate(tmp2(is:ie,js:je), source=0.0) - allocate(FtFw(1:2*nc+1,1:2*nc+1), source=0.0) - allocate(FtSSHw(is:ie,js:je,2*nc+1), source=0.0) - - ! Construct FtFw - FtFw(:,:) = 0.0 + real :: tmp0 !< Temporary variable for Cholesky decomposition [nondim] + real, dimension(2*nc+1,2*nc+1) :: L !< Lower triangular matrix of Cholesky decomposition [nondim] + real, dimension(2*nc+1) :: tmp1 !< Inverse of the diagonal entries of L [nondim] + real, dimension(ha1%is:ha1%ie,ha1%js:ha1%je) :: tmp2 !< 2D temporary array involving FtSSH [A] + real, dimension(ha1%is:ha1%ie,ha1%js:ha1%je,2*nc+1) :: y !< 3D temporary array, i.e., L' * x [A] + integer :: k, m, n + + ! Cholesky decomposition do m=1,2*nc+1 + + ! First, calculate the diagonal entries tmp0 = 0.0 - do k=1,m-1 - tmp0 = tmp0 + FtFw(m,k) * FtFw(m,k) + do k=1,m-1 ! This loop operates along the m-th row + tmp0 = tmp0 + L(m,k) * L(m,k) enddo - FtFw(m,m) = sqrt(FtF(m,m) - tmp0) - tmp1(m) = 1 / FtFw(m,m) - do k=m+1,2*nc+1 + L(m,m) = sqrt(FtF(m,m) - tmp0) ! This is the m-th diagonal entry + + ! Now calculate the off-diagonal entries + tmp1(m) = 1 / L(m,m) + do k=m+1,2*nc+1 ! This loop operates along the column below the m-th diagonal entry tmp0 = 0.0 do n=1,m-1 - tmp0 = tmp0 + FtFw(k,n) * FtFw(m,n) + tmp0 = tmp0 + L(k,n) * L(m,n) enddo - FtFw(k,m) = (FtF(k,m) - tmp0) * tmp1(m) + L(k,m) = (FtF(k,m) - tmp0) * tmp1(m) ! This is the k-th off-diagonal entry below the m-th diagonal entry enddo enddo - ! Solve for (FtFw' * FtSSHw) - FtSSHw(:,:,:) = ha1%FtSSH(:,:,:) + ! Solve for y from L * y = FtSSH do k=1,2*nc+1 tmp2(:,:) = 0.0 do m=1,k-1 - tmp2(:,:) = tmp2(:,:) + FtFw(k,m) * FtSSHw(:,:,m) + tmp2(:,:) = tmp2(:,:) + L(k,m) * y(:,:,m) enddo - FtSSHw(:,:,k) = (FtSSHw(:,:,k) - tmp2(:,:)) * tmp1(k) + y(:,:,k) = (ha1%FtSSH(:,:,k) - tmp2(:,:)) * tmp1(k) enddo - ! Solve for FtSSHw + ! Solve for x from L' * x = y do k=2*nc+1,1,-1 tmp2(:,:) = 0.0 do m=k+1,2*nc+1 - tmp2(:,:) = tmp2(:,:) + FtSSHw(:,:,m) * FtFw(m,k) + tmp2(:,:) = tmp2(:,:) + L(m,k) * x(:,:,m) enddo - FtSSHw(:,:,k) = (FtSSHw(:,:,k) - tmp2(:,:)) * tmp1(k) + x(:,:,k) = (y(:,:,k) - tmp2(:,:)) * tmp1(k) enddo - deallocate(tmp1) - deallocate(tmp2) - deallocate(FtFw) - end subroutine HA_solver !> \namespace harmonic_analysis @@ -441,7 +448,7 @@ end subroutine HA_solver !! step, and x is a 2*nc-by-1 vector containing the constant coefficients of the sine/cosine for each constituent !! (i.e., the harmonic constants). At each grid point, the harmonic constants are computed using least squares, !! -!! (F' * F) * x = F' * SSH_in, +!! (F' * F) * x = F' * SSH_in, => FtF * x = FtSSH, !! !! where the prime denotes matrix transpose, and SSH_in is the sea surface height (or other fields) determined by !! the model. The dot products (F' * F) and (F' * SSH_in) are computed by accumulating the sums as the model is