diff --git a/.github/workflows/pylint.yml b/.github/workflows/pylint.yml index bc053f3c..ede2845a 100644 --- a/.github/workflows/pylint.yml +++ b/.github/workflows/pylint.yml @@ -14,7 +14,7 @@ jobs: - name: Install dependencies run: | python -m pip install --upgrade pip - pip install pylint sewar + pip install pylint==2.17.7 sewar pip install -e ".[dev]" - name: Analysing the code with pylint run: | diff --git a/direct/nn/cirim/cirim.py b/direct/nn/cirim/cirim.py index b404962b..d2ad5c3f 100644 --- a/direct/nn/cirim/cirim.py +++ b/direct/nn/cirim/cirim.py @@ -161,9 +161,7 @@ def __init__( bias=bias, ) self.hh = nn.Parameter( - nn.init.normal_( - torch.empty(1, hidden_channels, 1, 1), std=1.0 / (hidden_channels * (1 + kernel_size**2)) - ) + nn.init.normal_(torch.empty(1, hidden_channels, 1, 1), std=1.0 / (hidden_channels * (1 + kernel_size**2))) ) self.reset_parameters() diff --git a/direct/nn/didn/didn.py b/direct/nn/didn/didn.py index e891d167..a988dbee 100644 --- a/direct/nn/didn/didn.py +++ b/direct/nn/didn/didn.py @@ -41,9 +41,7 @@ def __init__( Padding size. Default: 0. """ super().__init__() - self.conv = nn.Conv2d( - in_channels, out_channels * upscale_factor**2, kernel_size=kernel_size, padding=padding - ) + self.conv = nn.Conv2d(in_channels, out_channels * upscale_factor**2, kernel_size=kernel_size, padding=padding) self.pixelshuffle = nn.PixelShuffle(upscale_factor) def forward(self, x: torch.Tensor) -> torch.Tensor: diff --git a/direct/nn/get_nn_model_config.py b/direct/nn/get_nn_model_config.py index f260cfdf..a4ca957b 100644 --- a/direct/nn/get_nn_model_config.py +++ b/direct/nn/get_nn_model_config.py @@ -50,11 +50,11 @@ def _get_model_config( { "hidden_channels": kwargs.get("conv_hidden_channels", 64), "n_convs": kwargs.get("conv_n_convs", 15), - "activation": nn.PReLU() - if kwargs.get("conv_activation", "prelu") == ActivationType.prelu - else nn.ReLU() - if kwargs.get("conv_activation", "relu") == ActivationType.relu - else nn.LeakyReLU(), + "activation": ( + nn.PReLU() + if kwargs.get("conv_activation", "prelu") == ActivationType.prelu + else nn.ReLU() if kwargs.get("conv_activation", "relu") == ActivationType.relu else nn.LeakyReLU() + ), "batchnorm": kwargs.get("conv_batchnorm", False), } ) diff --git a/direct/nn/mri_models.py b/direct/nn/mri_models.py index 37dae3f4..56662ebb 100644 --- a/direct/nn/mri_models.py +++ b/direct/nn/mri_models.py @@ -586,10 +586,14 @@ def reconstruct_volumes( # type: ignore ) # Maybe not needed. del data - yield (curr_volume, curr_target, reduce_list_of_dicts(loss_dict_list), filename) if add_target else ( - curr_volume, - reduce_list_of_dicts(loss_dict_list), - filename, + yield ( + (curr_volume, curr_target, reduce_list_of_dicts(loss_dict_list), filename) + if add_target + else ( + curr_volume, + reduce_list_of_dicts(loss_dict_list), + filename, + ) ) @torch.no_grad() diff --git a/direct/nn/unet/unet_engine.py b/direct/nn/unet/unet_engine.py index 7efdc520..8153d841 100644 --- a/direct/nn/unet/unet_engine.py +++ b/direct/nn/unet/unet_engine.py @@ -38,9 +38,9 @@ def __init__( def forward_function(self, data: Dict[str, Any]) -> Tuple[torch.Tensor, None]: output_image = self.model( masked_kspace=data["masked_kspace"], - sensitivity_map=data["sensitivity_map"] - if self.cfg.model.image_initialization == "sense" # type: ignore - else None, + sensitivity_map=( + data["sensitivity_map"] if self.cfg.model.image_initialization == "sense" else None # type: ignore + ), ) output_image = T.modulus(output_image) diff --git a/tests/tests_data/test_mri_transforms.py b/tests/tests_data/test_mri_transforms.py index 76b55523..ee104de9 100644 --- a/tests/tests_data/test_mri_transforms.py +++ b/tests/tests_data/test_mri_transforms.py @@ -1,9 +1,9 @@ -# coding=utf-8 # Copyright (c) DIRECT Contributors """Tests for the direct.data.mri_transforms module.""" import functools +import warnings import numpy as np import pytest @@ -372,7 +372,7 @@ def test_EstimateSensitivityMap(shape, type_of_map, gaussian_sigma, espirit_iter else: transform = EstimateSensitivityMap(**args) if shape[0] == 1 or sense_map_in_sample: - with pytest.warns(None): + with warnings.catch_warnings(record=True): sample = transform(sample) else: sample = transform(sample)