-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlog.rpc
169 lines (169 loc) · 13.7 KB
/
log.rpc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
2022-08-27 23:26:08.311602: I tensorflow/core/util/util.cc:169] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2022-08-27 23:26:08.311602: I tensorflow/core/util/util.cc:169] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2022-08-27 23:26:08.311606: I tensorflow/core/util/util.cc:169] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2022-08-27 23:26:08.311602: I tensorflow/core/util/util.cc:169] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2022-08-27 23:26:08.311633: I tensorflow/core/util/util.cc:169] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2022-08-27 23:26:08.311630: I tensorflow/core/util/util.cc:169] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2022-08-27 23:26:08.311630: I tensorflow/core/util/util.cc:169] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2022-08-27 23:26:08.311630: I tensorflow/core/util/util.cc:169] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2022-08-27 23:26:11.843245: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-08-27 23:26:11.846871: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-08-27 23:26:11.857704: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-08-27 23:26:11.896708: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-08-27 23:26:11.904426: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-08-27 23:26:11.923388: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-08-27 23:26:11.930238: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-08-27 23:26:11.990344: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-08-27 23:26:12.866249: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 76069 MB memory: -> device: 0, name: A100-SXM-80GB, pci bus id: 0000:c5:00.0, compute capability: 8.0
2022-08-27 23:26:12.868778: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 76069 MB memory: -> device: 0, name: A100-SXM-80GB, pci bus id: 0000:16:00.0, compute capability: 8.0
2022-08-27 23:26:12.874329: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 76069 MB memory: -> device: 0, name: A100-SXM-80GB, pci bus id: 0000:8e:00.0, compute capability: 8.0
2022-08-27 23:26:12.909285: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 76069 MB memory: -> device: 0, name: A100-SXM-80GB, pci bus id: 0000:89:00.0, compute capability: 8.0
2022-08-27 23:26:12.930426: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 76069 MB memory: -> device: 0, name: A100-SXM-80GB, pci bus id: 0000:c9:00.0, compute capability: 8.0
2022-08-27 23:26:12.933625: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 76069 MB memory: -> device: 0, name: A100-SXM-80GB, pci bus id: 0000:10:00.0, compute capability: 8.0
2022-08-27 23:26:12.955212: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 76069 MB memory: -> device: 0, name: A100-SXM-80GB, pci bus id: 0000:4e:00.0, compute capability: 8.0
2022-08-27 23:26:13.643208: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 76069 MB memory: -> device: 0, name: A100-SXM-80GB, pci bus id: 0000:4a:00.0, compute capability: 8.0
2022-08-27 23:26:26.764060: I tensorflow/stream_executor/cuda/cuda_blas.cc:1786] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once.
127.0.0.1 - - [27/Aug/2022 23:26:26] "POST /RPC2 HTTP/1.1" 200 -
127.0.0.1 - - [27/Aug/2022 23:26:36] "POST /RPC2 HTTP/1.1" 200 -
#=========================== rpc_bleurt Starting listening! ===========================#
Process Process-1:
Traceback (most recent call last):
File "/usr/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
self.run()
File "/usr/lib/python3.7/multiprocessing/process.py", line 99, in run
self._target(*self._args, **self._kwargs)
File "/opt/tiger/fake_arnold/fairseq_mrt_wangtao/rpc_bleurt.py", line 30, in inference
batch = recv.recv()
File "/usr/lib/python3.7/multiprocessing/connection.py", line 250, in recv
buf = self._recv_bytes()
File "/usr/lib/python3.7/multiprocessing/connection.py", line 407, in _recv_bytes
buf = self._recv(4)
File "/usr/lib/python3.7/multiprocessing/connection.py", line 379, in _recv
chunk = read(handle, remaining)
KeyboardInterrupt
Process Process-3:
Traceback (most recent call last):
File "/usr/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
self.run()
File "/usr/lib/python3.7/multiprocessing/process.py", line 99, in run
self._target(*self._args, **self._kwargs)
File "/opt/tiger/fake_arnold/fairseq_mrt_wangtao/rpc_bleurt.py", line 30, in inference
batch = recv.recv()
File "/usr/lib/python3.7/multiprocessing/connection.py", line 250, in recv
buf = self._recv_bytes()
File "/usr/lib/python3.7/multiprocessing/connection.py", line 407, in _recv_bytes
buf = self._recv(4)
File "/usr/lib/python3.7/multiprocessing/connection.py", line 379, in _recv
chunk = read(handle, remaining)
KeyboardInterrupt
Process Process-7:
Traceback (most recent call last):
File "/usr/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
self.run()
File "/usr/lib/python3.7/multiprocessing/process.py", line 99, in run
self._target(*self._args, **self._kwargs)
File "/opt/tiger/fake_arnold/fairseq_mrt_wangtao/rpc_bleurt.py", line 30, in inference
batch = recv.recv()
File "/usr/lib/python3.7/multiprocessing/connection.py", line 250, in recv
buf = self._recv_bytes()
File "/usr/lib/python3.7/multiprocessing/connection.py", line 407, in _recv_bytes
buf = self._recv(4)
File "/usr/lib/python3.7/multiprocessing/connection.py", line 379, in _recv
chunk = read(handle, remaining)
KeyboardInterrupt
Process Process-4:
Traceback (most recent call last):
File "/usr/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
self.run()
File "/usr/lib/python3.7/multiprocessing/process.py", line 99, in run
self._target(*self._args, **self._kwargs)
File "/opt/tiger/fake_arnold/fairseq_mrt_wangtao/rpc_bleurt.py", line 30, in inference
batch = recv.recv()
File "/usr/lib/python3.7/multiprocessing/connection.py", line 250, in recv
buf = self._recv_bytes()
File "/usr/lib/python3.7/multiprocessing/connection.py", line 407, in _recv_bytes
buf = self._recv(4)
File "/usr/lib/python3.7/multiprocessing/connection.py", line 379, in _recv
chunk = read(handle, remaining)
KeyboardInterrupt
Process Process-6:
Traceback (most recent call last):
File "/usr/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
self.run()
File "/usr/lib/python3.7/multiprocessing/process.py", line 99, in run
self._target(*self._args, **self._kwargs)
File "/opt/tiger/fake_arnold/fairseq_mrt_wangtao/rpc_bleurt.py", line 30, in inference
batch = recv.recv()
File "/usr/lib/python3.7/multiprocessing/connection.py", line 250, in recv
buf = self._recv_bytes()
File "/usr/lib/python3.7/multiprocessing/connection.py", line 407, in _recv_bytes
buf = self._recv(4)
File "/usr/lib/python3.7/multiprocessing/connection.py", line 379, in _recv
chunk = read(handle, remaining)
KeyboardInterrupt
Process Process-2:
Traceback (most recent call last):
File "/usr/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
self.run()
File "/usr/lib/python3.7/multiprocessing/process.py", line 99, in run
self._target(*self._args, **self._kwargs)
File "/opt/tiger/fake_arnold/fairseq_mrt_wangtao/rpc_bleurt.py", line 30, in inference
batch = recv.recv()
File "/usr/lib/python3.7/multiprocessing/connection.py", line 250, in recv
buf = self._recv_bytes()
File "/usr/lib/python3.7/multiprocessing/connection.py", line 407, in _recv_bytes
buf = self._recv(4)
File "/usr/lib/python3.7/multiprocessing/connection.py", line 379, in _recv
chunk = read(handle, remaining)
KeyboardInterrupt
Process Process-8:
Traceback (most recent call last):
File "/usr/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
self.run()
File "/usr/lib/python3.7/multiprocessing/process.py", line 99, in run
self._target(*self._args, **self._kwargs)
File "/opt/tiger/fake_arnold/fairseq_mrt_wangtao/rpc_bleurt.py", line 30, in inference
batch = recv.recv()
File "/usr/lib/python3.7/multiprocessing/connection.py", line 250, in recv
buf = self._recv_bytes()
File "/usr/lib/python3.7/multiprocessing/connection.py", line 407, in _recv_bytes
buf = self._recv(4)
File "/usr/lib/python3.7/multiprocessing/connection.py", line 379, in _recv
chunk = read(handle, remaining)
KeyboardInterrupt
Process Process-5:
Traceback (most recent call last):
File "/usr/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
self.run()
File "/usr/lib/python3.7/multiprocessing/process.py", line 99, in run
self._target(*self._args, **self._kwargs)
File "/opt/tiger/fake_arnold/fairseq_mrt_wangtao/rpc_bleurt.py", line 30, in inference
batch = recv.recv()
File "/usr/lib/python3.7/multiprocessing/connection.py", line 250, in recv
buf = self._recv_bytes()
File "/usr/lib/python3.7/multiprocessing/connection.py", line 407, in _recv_bytes
buf = self._recv(4)
File "/usr/lib/python3.7/multiprocessing/connection.py", line 379, in _recv
chunk = read(handle, remaining)
KeyboardInterrupt
Traceback (most recent call last):
File "rpc_bleurt.py", line 64, in <module>
server.serve_forever()
File "/usr/lib/python3.7/socketserver.py", line 232, in serve_forever
ready = selector.select(poll_interval)
File "/usr/lib/python3.7/selectors.py", line 415, in select
fd_event_list = self._selector.poll(timeout)
KeyboardInterrupt
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.7/multiprocessing/popen_fork.py", line 28, in poll
pid, sts = os.waitpid(self.pid, flag)
KeyboardInterrupt