-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
171 lines (154 loc) · 5.14 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
import transformers
import gradio as gr
import sys
from train import smart_tokenizer_and_embedding_resize, \
DEFAULT_PAD_TOKEN, DEFAULT_EOS_TOKEN, DEFAULT_BOS_TOKEN, DEFAULT_UNK_TOKEN, \
PROMPT_DICT, \
DataArguments
BASE_MODEL = sys.argv[1]
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
if device == "cuda":
model = transformers.AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=False,
torch_dtype=torch.bfloat16,
device_map="auto",
)
elif device == "mps":
model = transformers.AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
device_map={"": device},
torch_dtype=torch.bfloat16,
)
else:
model = transformers.AutoModelForCausalLM.from_pretrained(
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
BASE_MODEL,
use_fast=False,
)
special_tokens_dict = dict()
if tokenizer.pad_token is None:
special_tokens_dict["pad_token"] = DEFAULT_PAD_TOKEN
if tokenizer.eos_token is None:
special_tokens_dict["eos_token"] = DEFAULT_EOS_TOKEN
if tokenizer.bos_token is None:
special_tokens_dict["bos_token"] = DEFAULT_BOS_TOKEN
if tokenizer.unk_token is None:
special_tokens_dict["unk_token"] = DEFAULT_UNK_TOKEN
if tokenizer.pad_token is None:
smart_tokenizer_and_embedding_resize(
special_tokens_dict=special_tokens_dict,
tokenizer=tokenizer,
model=model,
)
tokenizer.padding_side = "left"
def generate_prompt(instruction, input=None, template="alpaca"):
if template == "alpaca":
if input:
return PROMPT_DICT["prompt_input"].format(instruction=instruction, input=input)
else:
return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)
elif template == "raw":
if input:
return f"{instruction}\n\n{input}"
else:
return f"{instruction}"
else:
raise NotImplementedError
if device != "cpu":
model.half()
model.eval()
if torch.__version__ >= "2":
model = torch.compile(model)
def evaluate(
instruction,
input=None,
template="alpaca",
do_sample=False,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
**kwargs,
):
prompt = generate_prompt(instruction, input, template)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = transformers.GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s, skip_special_tokens=True)
return output[len(prompt):].strip()
g = gr.Interface(
fn=evaluate,
inputs=[
gr.components.Textbox(
lines=2, label="Instruction", placeholder="Tell me about alpacas."
),
gr.components.Textbox(lines=2, label="Input", placeholder="none"),
gr.components.Dropdown(["raw", "alpaca"], value="alpaca", label="Template Format"),
gr.components.Checkbox(label="Do Sample"),
gr.components.Slider(minimum=0, maximum=1, value=0.7, label="Temperature"),
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
gr.components.Slider(minimum=1, maximum=4, step=1, value=1, label="Beams"),
gr.components.Slider(
minimum=1, maximum=512, step=1, value=512, label="Max tokens"
),
],
outputs=[
gr.inputs.Textbox(
lines=5,
label="Output",
)
],
title="🦙Alpaca Web Demo",
description="Made with 💖",
flagging_options=["👍🏼", "👎🏼"]
)
g.queue(concurrency_count=1)
g.launch()
# Old testing code follows.
"""
if __name__ == "__main__":
# testing code for readme
for instruction in [
"Tell me about alpacas.",
"Tell me about the president of Mexico in 2019.",
"Tell me about the king of France in 2019.",
"List all Canadian provinces in alphabetical order.",
"Write a Python program that prints the first 10 Fibonacci numbers.",
"Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.",
"Tell me five words that rhyme with 'shock'.",
"Translate the sentence 'I have no mouth but I must scream' into Spanish.",
"Count up from 1 to 500.",
]:
print("Instruction:", instruction)
print("Response:", evaluate(instruction))
print()
"""