-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
139 lines (116 loc) · 5.65 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import argparse
import logging
import torch
import numpy as np
import random
from torch.utils.data import DataLoader
from models.unimo_model import UnimoREModel
from processor.dataset import MOREProcessor, MOREDataset
from modules.train import BertTrainer
import warnings
# from torch.utils.tensorboard import SummaryWriter
# from tensorboardX import SummaryWriter
warnings.filterwarnings("ignore", category=UserWarning)
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO,
)
logger = logging.getLogger(__name__)
DATA_PATH = {
'MORE': {
'train': 'data/MORE/txt/train.txt',
'valid': 'data/MORE/txt/valid.txt',
'test': 'data/MORE/txt/test.txt',
'train_ent_dict': 'data/MORE/ent_train_dict.pth',
'valid_ent_dict': 'data/MORE/ent_valid_dict.pth',
'test_ent_dict': 'data/MORE/ent_test_dict.pth',
}
}
IMG_PATH = {
'MORE': {
'train': 'data/MORE/img_org/train',
'valid': 'data/MORE/img_org/valid',
'test': 'data/MORE/img_org/test',
}
}
DEP_PATH = {
'MORE': {
'train': 'data/MORE/img_dep/',
'valid': 'data/MORE/img_dep/',
'test': 'data/MORE/img_dep/',
}
}
CAP_PATH = {
'MORE': {
'train': 'data/MORE/caption_dict.json',
'valid': 'data/MORE/caption_dict.json',
'test': 'data/MORE/caption_dict.json',
}
}
re_path = 'data/MORE/rel2id.json'
def set_seed(seed=2021):
"""set random seed"""
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
np.random.seed(seed)
random.seed(seed)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--vit_name', default='vit', type=str, help="The name of vit.")
parser.add_argument('--dataset_name', default='MORE', type=str, help="The name of dataset.")
parser.add_argument('--bert_name', default='bert-base', type=str,
help="Pretrained language model name, bart-base or bart-large")
parser.add_argument('--num_epochs', default=30, type=int, help="Training epochs")
parser.add_argument('--device', default='cuda', type=str, help="cuda or cpu")
parser.add_argument('--batch_size', default=16, type=int, help="batch size")
parser.add_argument('--lr', default=2e-5, type=float, help="learning rate")
parser.add_argument('--warmup_ratio', default=0.01, type=float)
parser.add_argument('--eval_begin_epoch', default=16, type=int)
parser.add_argument('--seed', default=1, type=int, help="random seed, default is 1")
parser.add_argument('--load_path', default=None, type=str, help="Load model from load_path")
parser.add_argument('--save_path', default=None, type=str, help="save model at save_path")
parser.add_argument('--notes', default="", type=str, help="input some remarks for making save path dir.")
parser.add_argument('--do_train', action='store_true')
parser.add_argument('--do_test', action='store_true')
parser.add_argument('--do_predict', action='store_true')
parser.add_argument('--max_seq', default=128, type=int)
parser.add_argument('--use_box', action='store_true')
parser.add_argument('--use_cap', action='store_true')
parser.add_argument('--use_dep', action='store_true')
args = parser.parse_args()
set_seed(args.seed) # set seed, default is 1
data_path, img_path, dep_path, cap_path = DATA_PATH[args.dataset_name], IMG_PATH[args.dataset_name], DEP_PATH[args.dataset_name], CAP_PATH[args.dataset_name]
data_process, dataset_class = MOREProcessor, MOREDataset
logger.info(data_path)
if args.save_path is not None: # make save_path dir
args.save_path = os.path.join(args.save_path, args.dataset_name + "_" + str(args.batch_size) + "_" + str(args.lr) + "_" + args.notes)
if not os.path.exists(args.save_path):
os.makedirs(args.save_path, exist_ok=True)
logger.info(args)
# logdir = "logs/" + args.dataset_name + "_" + str(args.batch_size) + "_" + str(args.lr) + args.notes
# writer = SummaryWriter(logdir=logdir),
writer = None
if args.do_train:
processor = data_process(data_path, re_path, args.bert_name, args.vit_name)
train_dataset = dataset_class(processor, img_path, dep_path, cap_path, args, mode='train')
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True)
valid_dataset = dataset_class(processor, img_path, dep_path, cap_path, args, mode='valid')
valid_dataloader = DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True)
test_dataset = dataset_class(processor, img_path, dep_path, cap_path, args, mode='test')
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True)
re_dict = processor.get_relation_dict()
num_labels = len(re_dict)
tokenizer = processor.tokenizer
# train
model = UnimoREModel(num_labels, tokenizer, args)
model = torch.nn.DataParallel(model)
model = model.to(args.device)
trainer = BertTrainer(train_data=train_dataloader, dev_data=valid_dataloader, test_data=test_dataloader,
re_dict=re_dict, model=model, args=args, logger=logger, writer=writer)
trainer.train()
torch.cuda.empty_cache()
# writer.close()
if __name__ == "__main__":
main()