-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathtrain.py
412 lines (344 loc) · 19.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import os
import numpy as np
import torch
import torch.nn.functional as F
import torchvision
from collections import defaultdict
from random import randint
from utils.loss_utils import ssim
from gaussian_renderer import render_fn_dict
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
from tqdm import tqdm
from utils.image_utils import psnr, visualize_depth
from utils.system_utils import prepare_output_and_logger
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, OptimizationParams
from gui import GUI
from scene.direct_light_map import DirectLightMap
from utils.graphics_utils import rgb_to_srgb
from torchvision.utils import save_image, make_grid
from lpipsPyTorch import lpips
from scene.utils import save_render_orb, save_depth_orb, save_normal_orb, save_albedo_orb, save_roughness_orb
def training(dataset: ModelParams, opt: OptimizationParams, pipe: PipelineParams, is_pbr=False):
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
"""
Setup Gaussians
"""
gaussians = GaussianModel(dataset.sh_degree, render_type=args.type)
scene = Scene(dataset, gaussians)
if args.checkpoint:
print("Create Gaussians from checkpoint {}".format(args.checkpoint))
first_iter = gaussians.create_from_ckpt(args.checkpoint, restore_optimizer=True)
elif scene.loaded_iter:
gaussians.load_ply(os.path.join(dataset.model_path,
"point_cloud",
"iteration_" + str(scene.loaded_iter),
"point_cloud.ply"))
else:
gaussians.create_from_pcd(scene.scene_info.point_cloud, scene.cameras_extent)
gaussians.training_setup(opt)
"""
Setup PBR components
"""
pbr_kwargs = dict()
if is_pbr:
# first update visibility
gaussians.update_visibility(pipe.sample_num)
pbr_kwargs['sample_num'] = pipe.sample_num
print("Using global incident light for regularization.")
direct_env_light = DirectLightMap(dataset.env_resolution, opt.light_init)
if args.checkpoint:
env_checkpoint = os.path.dirname(args.checkpoint) + "/env_light_" + os.path.basename(args.checkpoint)
print("Trying to load global incident light from ", env_checkpoint)
if os.path.exists(env_checkpoint):
direct_env_light.create_from_ckpt(env_checkpoint, restore_optimizer=True)
print("Successfully loaded!")
else:
print("Failed to load!")
direct_env_light.training_setup(opt)
pbr_kwargs["env_light"] = direct_env_light
""" Prepare render function and bg"""
render_fn = render_fn_dict[args.type]
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
""" GUI """
windows = None
if args.gui:
cam = scene.getTrainCameras()[0]
c2w = cam.c2w.detach().cpu().numpy()
center = gaussians.get_xyz.mean(dim=0).detach().cpu().numpy()
render_kwargs = {"pc": gaussians, "pipe": pipe, "bg_color": background, "opt": opt, "is_training": False,
"dict_params": pbr_kwargs}
windows = GUI(cam.image_height, cam.image_width, cam.FoVy,
c2w=c2w, center=center,
render_fn=render_fn, render_kwargs=render_kwargs,
mode='pbr')
""" Training """
viewpoint_stack = None
ema_dict_for_log = defaultdict(int)
progress_bar = tqdm(range(first_iter + 1, opt.iterations + 1), desc="Training progress",
initial=first_iter, total=opt.iterations)
for iteration in progress_bar:
gaussians.update_learning_rate(iteration)
if windows is not None:
windows.render()
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Every 1000 update visibility
# if is_pbr and iteration % 1000 == 0:
# gaussians.update_visibility(pipe.sample_num)
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
loss = 0
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack) - 1))
# Render
if (iteration - 1) == args.debug_from:
pipe.debug = True
pbr_kwargs["iteration"] = iteration - first_iter
render_pkg = render_fn(viewpoint_cam, gaussians, pipe, background,
opt=opt, is_training=True, dict_params=pbr_kwargs, iteration=iteration)
viewspace_point_tensor, visibility_filter, radii = \
render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
# Loss
tb_dict = render_pkg["tb_dict"]
loss += render_pkg["loss"]
loss.backward()
with torch.no_grad():
if pipe.save_training_vis:
save_training_vis(viewpoint_cam, gaussians, background, render_fn,
pipe, opt, first_iter, iteration, pbr_kwargs)
# Progress bar
pbar_dict = {"num": gaussians.get_xyz.shape[0]}
if is_pbr:
pbar_dict["light_mean"] = direct_env_light.get_env.mean().item()
pbar_dict["env"] = direct_env_light.H
for k in tb_dict:
if k in ["psnr", "psnr_pbr"]:
ema_dict_for_log[k] = 0.4 * tb_dict[k] + 0.6 * ema_dict_for_log[k]
pbar_dict[k] = f"{ema_dict_for_log[k]:.{7}f}"
# if iteration % 10 == 0:
progress_bar.set_postfix(pbar_dict)
# Log and save
training_report(tb_writer, iteration, tb_dict,
scene, render_fn, pipe=pipe,
bg_color=background, dict_params=pbr_kwargs)
# densification
if iteration < opt.densify_until_iter:
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter,
render_pkg['weights'])
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter],
radii[visibility_filter])
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
densify_grad_normal_threshold = opt.densify_grad_normal_threshold if iteration > opt.normal_densify_from_iter else 99999
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold,
densify_grad_normal_threshold)
if iteration % opt.opacity_reset_interval == 0 or (
dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
# Optimizer step
gaussians.step()
for component in pbr_kwargs.values():
try:
component.step()
except:
pass
# save checkpoints
if iteration % args.save_interval == 0 or iteration == args.iterations:
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
if iteration % args.checkpoint_interval == 0 or iteration == args.iterations:
torch.save((gaussians.capture(), iteration),
os.path.join(scene.model_path, "chkpnt" + str(iteration) + ".pth"))
for com_name, component in pbr_kwargs.items():
try:
torch.save((component.capture(), iteration),
os.path.join(scene.model_path, f"{com_name}_chkpnt" + str(iteration) + ".pth"))
print("\n[ITER {}] Saving Checkpoint".format(iteration))
except:
pass
print("[ITER {}] Saving {} Checkpoint".format(iteration, com_name))
if dataset.eval:
eval_render(scene, gaussians, render_fn, pipe, background, opt, pbr_kwargs)
def training_report(tb_writer, iteration, tb_dict, scene: Scene, renderFunc, pipe,
bg_color: torch.Tensor, scaling_modifier=1.0, override_color=None,
opt: OptimizationParams = None, is_training=False, **kwargs):
if tb_writer:
for key in tb_dict:
tb_writer.add_scalar(f'train_loss_patches/{key}', tb_dict[key], iteration)
# Report test and samples of training set
if iteration % args.test_interval == 0:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras': scene.getTestCameras()},
{'name': 'train', 'cameras': scene.getTrainCameras()})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
psnr_pbr_test = 0.0
for idx, viewpoint in enumerate(
tqdm(config['cameras'], desc="Evaluating " + config['name'], leave=False)):
render_pkg = renderFunc(viewpoint, scene.gaussians, pipe, bg_color,
scaling_modifier, override_color, opt, is_training,
**kwargs)
image = render_pkg["render"]
gt_image = viewpoint.original_image.cuda()
opacity = torch.clamp(render_pkg["opacity"], 0.0, 1.0)
depth = render_pkg["depth"]
depth = (depth - depth.min()) / (depth.max() - depth.min())
normal = torch.clamp(
render_pkg.get("normal", torch.zeros_like(image)) / 2 + 0.5 * opacity, 0.0, 1.0)
# BRDF
base_color = torch.clamp(render_pkg.get("base_color", torch.zeros_like(image)), 0.0, 1.0)
roughness = torch.clamp(render_pkg.get("roughness", torch.zeros_like(depth)), 0.0, 1.0)
image_pbr = render_pkg.get("pbr", torch.zeros_like(image))
grid = torchvision.utils.make_grid(
torch.stack([image, image_pbr, gt_image,
opacity.repeat(3, 1, 1), depth.repeat(3, 1, 1), normal,
base_color, roughness.repeat(3, 1, 1)], dim=0), nrow=3)
if tb_writer and (idx < 2):
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name),
grid[None], global_step=iteration)
l1_test += F.l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
psnr_pbr_test += psnr(image_pbr, gt_image).mean().double()
psnr_test /= len(config['cameras'])
psnr_pbr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {} PSNR_PBR {}".format(iteration, config['name'], l1_test,
psnr_test, psnr_pbr_test))
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr_pbr', psnr_pbr_test, iteration)
if iteration == args.iterations:
with open(os.path.join(args.model_path, config['name'] + "_loss.txt"), 'w') as f:
f.write("L1 {} PSNR {} PSNR_PBR {}".format(l1_test, psnr_test, psnr_pbr_test))
torch.cuda.empty_cache()
def save_training_vis(viewpoint_cam, gaussians, background, render_fn, pipe, opt, first_iter, iteration, pbr_kwargs):
os.makedirs(os.path.join(args.model_path, "visualize"), exist_ok=True)
with torch.no_grad():
if iteration % pipe.save_training_vis_iteration == 0 or iteration == first_iter + 1:
render_pkg = render_fn(viewpoint_cam, gaussians, pipe, background,
opt=opt, is_training=False, dict_params=pbr_kwargs)
visualization_list = [
render_pkg["render"],
viewpoint_cam.original_image.cuda(),
visualize_depth(render_pkg["depth"]),
(render_pkg["depth_var"] / 0.001).clamp_max(1).repeat(3, 1, 1),
render_pkg["opacity"].repeat(3, 1, 1),
render_pkg["normal"] * 0.5 + 0.5,
render_pkg["pseudo_normal"] * 0.5 + 0.5,
]
if is_pbr:
H, W = render_pkg["pbr"].shape[1:]
env = F.interpolate(render_pkg['env'].permute(0, 3, 1, 2), (H, 2*W))
env_0 = env[0, :, :, :W]
env_1 = env[0, :, :, W:]
visualization_list.extend([
render_pkg["base_color"],
render_pkg["roughness"].repeat(3, 1, 1),
render_pkg["visibility"].repeat(3, 1, 1),
render_pkg["diffuse"],
# render_pkg["lights"],
render_pkg["specular"],
# render_pkg["local_lights"],
render_pkg["global_lights"],
render_pkg["pbr"],
rgb_to_srgb(env_0),
rgb_to_srgb(env_1),
])
grid = torch.stack(visualization_list, dim=0)
grid = make_grid(grid, nrow=4)
scale = grid.shape[-2] / 800
grid = F.interpolate(grid[None], (int(grid.shape[-2]/scale), int(grid.shape[-1]/scale)))[0]
save_image(grid, os.path.join(args.model_path, "visualize", f"{iteration:06d}.png"))
def eval_render(scene, gaussians, render_fn, pipe, background, opt, pbr_kwargs):
psnr_test = 0.0
ssim_test = 0.0
lpips_test = 0.0
test_cameras = scene.getTestCameras()
os.makedirs(os.path.join(args.model_path, 'eval', 'render'), exist_ok=True)
os.makedirs(os.path.join(args.model_path, 'eval', 'gt'), exist_ok=True)
os.makedirs(os.path.join(args.model_path, 'eval', 'normal'), exist_ok=True)
if gaussians.use_pbr:
os.makedirs(os.path.join(args.model_path, 'eval', 'base_color'), exist_ok=True)
os.makedirs(os.path.join(args.model_path, 'eval', 'roughness'), exist_ok=True)
os.makedirs(os.path.join(args.model_path, 'eval', 'lights'), exist_ok=True)
os.makedirs(os.path.join(args.model_path, 'eval', 'local'), exist_ok=True)
os.makedirs(os.path.join(args.model_path, 'eval', 'global'), exist_ok=True)
os.makedirs(os.path.join(args.model_path, 'eval', 'visibility'), exist_ok=True)
progress_bar = tqdm(range(0, len(test_cameras)), desc="Evaluating",
initial=0, total=len(test_cameras))
with torch.no_grad():
for idx in progress_bar:
viewpoint = test_cameras[idx]
results = render_fn(viewpoint, gaussians, pipe, background, opt=opt, is_training=False,
dict_params=pbr_kwargs)
if gaussians.use_pbr:
image = results["pbr"]
else:
image = results["render"]
image = torch.clamp(image, 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
psnr_test += psnr(image, gt_image).mean().double()
ssim_test += ssim(image, gt_image).mean().double()
lpips_test += lpips(image, gt_image, net_type='vgg').mean().double()
save_image(image, os.path.join(args.model_path, 'eval', "render", f"{viewpoint.image_name}.png"))
save_image(gt_image, os.path.join(args.model_path, 'eval', "gt", f"{viewpoint.image_name}.png"))
save_image(results["normal"] * 0.5 + 0.5,
os.path.join(args.model_path, 'eval', "normal", f"{viewpoint.image_name}.png"))
if gaussians.use_pbr:
save_image(results["base_color"],
os.path.join(args.model_path, 'eval', "base_color", f"{viewpoint.image_name}.png"))
save_image(results["roughness"],
os.path.join(args.model_path, 'eval', "roughness", f"{viewpoint.image_name}.png"))
save_image(results["lights"],
os.path.join(args.model_path, 'eval', "lights", f"{viewpoint.image_name}.png"))
save_image(results["local_lights"],
os.path.join(args.model_path, 'eval', "local", f"{viewpoint.image_name}.png"))
save_image(results["global_lights"],
os.path.join(args.model_path, 'eval', "global", f"{viewpoint.image_name}.png"))
save_image(results["visibility"],
os.path.join(args.model_path, 'eval', "visibility", f"{viewpoint.image_name}.png"))
psnr_test /= len(test_cameras)
ssim_test /= len(test_cameras)
lpips_test /= len(test_cameras)
with open(os.path.join(args.model_path, 'eval', "eval.txt"), "w") as f:
f.write(f"psnr: {psnr_test}\n")
f.write(f"ssim: {ssim_test}\n")
f.write(f"lpips: {lpips_test}\n")
print("\n[ITER {}] Evaluating {}: PSNR {} SSIM {} LPIPS {}".format(args.iterations, "test", psnr_test, ssim_test,
lpips_test))
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument('--gui', action='store_true', default=False, help="use gui")
parser.add_argument('-t', '--type', choices=['render', 'normal', 'neilf'], default='render')
parser.add_argument("--test_interval", type=int, default=2500)
parser.add_argument("--save_interval", type=int, default=5000)
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_interval", type=int, default=5000)
parser.add_argument("-c", "--checkpoint", type=str, default=None)
args = parser.parse_args(sys.argv[1:])
print(f"Current model path: {args.model_path}")
print(f"Current rendering type: {args.type}")
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
is_pbr = args.type in ['neilf']
training(lp.extract(args), op.extract(args), pp.extract(args), is_pbr=is_pbr)
# All done
print("\nTraining complete.")