-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_mp.py
348 lines (284 loc) · 14.1 KB
/
train_mp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import sys
import os
import time
import numpy as np
import argparse
import pynvml
import torch
import torch.nn as nn
import torch.optim as optim
from torch.cuda.amp import autocast, GradScaler
import torch.multiprocessing
from torch.utils.tensorboard import SummaryWriter
from torch.nn.parallel import DistributedDataParallel
from torch.distributed import ReduceOp
import logging
from utils import logging_utils
logging_utils.config_logger()
from utils.YParams import YParams
from utils import get_data_loader_distributed
from utils import comm
from utils.loss import l2_loss, l2_loss_opt
from utils.metrics import weighted_rmse
from networks import vit
from distributed.mappings import init_ddp_model_and_reduction_hooks
from distributed.helpers import sync_params
from utils.plots import generate_images
def train(params, args, local_rank, world_rank, world_size):
# set device and benchmark mode
torch.backends.cudnn.benchmark = True
torch.cuda.set_device(local_rank)
device = torch.device('cuda:%d'%local_rank)
# torch.autograd.set_detect_anomaly(True)
# init pynvml and get handle
pynvml.nvmlInit()
nvml_handle = pynvml.nvmlDeviceGetHandleByIndex(device.index)
# get data loader
logging.info('rank %d, begin data loader init'%world_rank)
train_data_loader, train_dataset, train_sampler = get_data_loader_distributed(params, params.train_data_path, params.distributed, train=True)
val_data_loader, valid_dataset = get_data_loader_distributed(params, params.valid_data_path, params.distributed, train=False)
logging.info('rank %d, data loader initialized'%(world_rank))
# create model
model = vit.ViT(params).to(device)
if params.enable_jit:
model = torch.compile(model)
if params.amp_dtype == torch.float16:
scaler = GradScaler()
# weight initialization needs to be synced across shared weights
if comm.get_size("model") > 1:
sync_params(model)
if params.distributed and not args.noddp:
model = init_ddp_model_and_reduction_hooks(model, device_ids=[local_rank],
output_device=[local_rank],
bucket_cap_mb=args.bucket_cap_mb)
if params.enable_fused:
optimizer = optim.Adam(model.parameters(), lr = params.lr, fused=True, betas=(0.9, 0.95))
else:
optimizer = optim.Adam(model.parameters(), lr = params.lr, betas=(0.9, 0.95))
if world_rank == 0:
logging.info(model)
all_mem_gb = pynvml.nvmlDeviceGetMemoryInfo(nvml_handle).used / (1024. * 1024. * 1024.)
logging.info(f"Scaffolding memory high watermark: {all_mem_gb} GB.")
iters = 0
startEpoch = 0
if params.lr_schedule == 'cosine':
if params.warmup > 0:
lr_scale = lambda x: min((x+1)/params.warmup, 0.5*(1 + np.cos(np.pi*x/params.num_iters)))
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_scale)
else:
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=params.num_iters)
else:
scheduler = None
# select loss function
if params.enable_jit:
loss_func = l2_loss_opt
else:
loss_func = l2_loss
if world_rank==0:
logging.info("Starting Training Loop...")
# Log initial loss on train and validation to tensorboard
with torch.no_grad():
inp, tar = map(lambda x: x.to(device), next(iter(train_data_loader)))
gen = model(inp)
tr_loss = loss_func(gen, tar)
inp, tar = map(lambda x: x.to(device), next(iter(val_data_loader)))
gen = model(inp)
val_loss = loss_func(gen, tar)
val_rmse = weighted_rmse(gen, tar)
if params.distributed:
torch.distributed.all_reduce(tr_loss, op=ReduceOp.AVG, group=comm.get_group("data"))
torch.distributed.all_reduce(val_loss, op=ReduceOp.AVG, group=comm.get_group("data"))
torch.distributed.all_reduce(val_rmse, op=ReduceOp.AVG, group=comm.get_group("data"))
if world_rank==0:
args.tboard_writer.add_scalar('Loss/train', tr_loss.item(), 0)
args.tboard_writer.add_scalar('Loss/valid', val_loss.item(), 0)
args.tboard_writer.add_scalar('RMSE(u10m)/valid', val_rmse.cpu().numpy()[0], 0)
params.num_epochs = params.num_iters//len(train_data_loader)
iters = 0
t1 = time.time()
for epoch in range(startEpoch, startEpoch + params.num_epochs):
torch.cuda.synchronize() # device sync to ensure accurate epoch timings
if params.distributed and (train_sampler is not None):
train_sampler.set_epoch(epoch)
start = time.time()
tr_loss = []
tr_time = 0.
dat_time = 0.
log_time = 0.
model.train()
step_count = 0
for i, data in enumerate(train_data_loader, 0):
if world_rank == 0:
if (epoch == 3 and i == 0):
torch.cuda.profiler.start()
if (epoch == 3 and i == len(train_data_loader) - 1):
torch.cuda.profiler.stop()
torch.cuda.nvtx.range_push(f"step {i}")
iters += 1
dat_start = time.time()
torch.cuda.nvtx.range_push(f"data copy in {i}")
inp, tar = map(lambda x: x.to(device), data)
torch.cuda.nvtx.range_pop() # copy in
tr_start = time.time()
b_size = inp.size(0)
optimizer.zero_grad()
torch.cuda.nvtx.range_push(f"forward")
with autocast(enabled=params.amp_enabled, dtype=params.amp_dtype):
gen = model(inp)
loss = loss_func(gen, tar)
torch.cuda.nvtx.range_pop() #forward
if world_rank == 0 and i == 1: # print the mem used
all_mem_gb = pynvml.nvmlDeviceGetMemoryInfo(nvml_handle).used / (1024. * 1024. * 1024.)
logging.info(f" Memory usage after forward pass: {all_mem_gb} GB.")
if params.amp_dtype == torch.float16:
scaler.scale(loss).backward()
torch.cuda.nvtx.range_push(f"optimizer")
scaler.step(optimizer)
torch.cuda.nvtx.range_pop() # optimizer
scaler.update()
else:
loss.backward()
torch.cuda.nvtx.range_push(f"optimizer")
optimizer.step()
torch.cuda.nvtx.range_pop() # optimizer
if params.distributed:
torch.distributed.all_reduce(loss, op=ReduceOp.AVG, group=comm.get_group("data"))
tr_loss.append(loss.item())
torch.cuda.nvtx.range_pop() # step
# lr step
scheduler.step()
tr_end = time.time()
tr_time += tr_end - tr_start
dat_time += tr_start - dat_start
step_count += 1
torch.cuda.synchronize() # device sync to ensure accurate epoch timings
end = time.time()
if world_rank==0:
iters_per_sec = step_count / (end - start)
samples_per_sec = params["global_batch_size"] * iters_per_sec
logging.info('Time taken for epoch %i is %f sec, avg %f samples/sec',
epoch + 1, end - start, samples_per_sec)
logging.info(' Avg train loss=%f'%np.mean(tr_loss))
args.tboard_writer.add_scalar('Loss/train', np.mean(tr_loss), iters)
args.tboard_writer.add_scalar('Learning Rate', optimizer.param_groups[0]['lr'], iters)
args.tboard_writer.add_scalar('Avg iters per sec', iters_per_sec, iters)
args.tboard_writer.add_scalar('Avg samples per sec', samples_per_sec, iters)
fig = generate_images([inp, tar, gen])
args.tboard_writer.add_figure('Visualization, t2m', fig, iters, close=True)
val_start = time.time()
val_loss = torch.zeros(1, device=device)
val_rmse = torch.zeros((params.n_out_channels), dtype=torch.float32, device=device)
valid_steps = 0
model.eval()
with torch.inference_mode():
with torch.no_grad():
for i, data in enumerate(val_data_loader, 0):
with autocast(enabled=params.amp_enabled, dtype=params.amp_dtype):
inp, tar = map(lambda x: x.to(device), data)
gen = model(inp)
val_loss += loss_func(gen, tar)
val_rmse += weighted_rmse(gen, tar)
valid_steps += 1
if params.distributed:
torch.distributed.all_reduce(val_loss, op=ReduceOp.AVG, group=comm.get_group("data"))
torch.distributed.all_reduce(val_rmse, op=ReduceOp.AVG, group=comm.get_group("data"))
val_rmse /= valid_steps # Avg validation rmse
val_loss /= valid_steps
val_end = time.time()
if world_rank==0:
logging.info(' Avg val loss={}'.format(val_loss.item()))
logging.info(' Total validation time: {} sec'.format(val_end - val_start))
args.tboard_writer.add_scalar('Loss/valid', val_loss, iters)
args.tboard_writer.add_scalar('RMSE(u10m)/valid', val_rmse.cpu().numpy()[0], iters)
args.tboard_writer.flush()
torch.cuda.synchronize()
t2 = time.time()
tottime = t2 - t1
pynvml.nvmlShutdown()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--run_num", default='00', type=str, help='tag for indexing the current experiment')
parser.add_argument("--yaml_config", default='./config/ViT.yaml', type=str, help='path to yaml file containing training configs')
parser.add_argument("--config", default='base', type=str, help='name of desired config in yaml file')
parser.add_argument("--amp_mode", default='none', type=str, choices=['none', 'fp16', 'bf16'], help='select automatic mixed precision mode')
parser.add_argument("--enable_fused", action='store_true', help='enable fused Adam optimizer')
parser.add_argument("--enable_jit", action='store_true', help='enable JIT compilation')
parser.add_argument("--local_batch_size", default=None, type=int, help='local batchsize (manually override global_batch_size config setting)')
parser.add_argument("--num_iters", default=None, type=int, help='number of iters to run')
parser.add_argument("--num_data_workers", default=None, type=int, help='number of data workers for data loader')
parser.add_argument("--data_loader_config", default=None, type=str, choices=['pytorch', 'dali'], help="dataloader configuration. choices: 'pytorch', 'dali'")
parser.add_argument("--bucket_cap_mb", default=25, type=int, help='max message bucket size in mb')
parser.add_argument("--disable_broadcast_buffers", action='store_true', help='disable syncing broadcasting buffers')
parser.add_argument("--noddp", action='store_true', help='disable DDP communication')
# model parallelism arguments
parser.add_argument("--row_parallel_size", default=1, type=int, help="Number of row comms")
parser.add_argument("--col_parallel_size", default=1, type=int, help="Number of col comms") # not used here
args = parser.parse_args()
run_num = args.run_num
params = YParams(os.path.abspath(args.yaml_config), args.config)
# Update config with modified args
# set up amp
if args.amp_mode != 'none':
params.update({"amp_mode": args.amp_mode})
amp_dtype = torch.float32
if params.amp_mode == "fp16":
amp_dtype = torch.float16
elif params.amp_mode == "bf16":
amp_dtype = torch.bfloat16
params.update({"amp_enabled": amp_dtype is not torch.float32,
"amp_dtype" : amp_dtype,
"enable_fused" : args.enable_fused,
"enable_jit" : args.enable_jit
})
if args.data_loader_config:
params.update({"data_loader_config" : args.data_loader_config})
if args.num_iters:
params.update({"num_iters" : args.num_iters})
if args.num_data_workers:
params.update({"num_data_workers" : args.num_data_workers})
params.distributed = False
# setup model parallel sizes
# we do not use col parallel size for this tutorial, but leave it in
# so that an interested user can begin to extend
assert (
args.col_parallel_size == 1
), f"col_parallel_size is not used in this example, please set to 1."
params["model_parallel_sizes"] = [
args.row_parallel_size,
args.col_parallel_size
]
params["model_parallel_names"] = ["row_matmul", "col_matmul"]
# initialize comm
comm.init(params, verbose=True)
# get info from comm
world_size = comm.get_world_size()
world_rank = comm.get_world_rank()
local_rank = comm.get_local_rank()
params.distributed = (world_size > 1)
assert (
params["global_batch_size"] % comm.get_size("data") == 0
), f"Error, cannot evenly distribute {params['global_batch_size']} across {comm.get_size('data')} GPU."
if args.local_batch_size:
# Manually override batch size
params.local_batch_size = args.local_batch_size
params.update({"global_batch_size" : comm.get_size("data") * args.local_batch_size})
else:
# Compute local batch size based on number of ranks
params.local_batch_size = int(params["global_batch_size"] // comm.get_size("data"))
# for data loader, set the actual number of data shards and id
params.data_num_shards = comm.get_size("data")
params.data_shard_id = comm.get_rank("data")
# Set up directory
baseDir = params.expdir
expDir = os.path.join(baseDir, args.config + '/%dMP/'%(comm.get_size("model")) + str(run_num) + '/')
if world_rank==0:
if not os.path.isdir(expDir):
os.makedirs(expDir)
logging_utils.log_to_file(logger_name=None, log_filename=os.path.join(expDir, 'out.log'))
params.log()
args.tboard_writer = SummaryWriter(log_dir=os.path.join(expDir, 'logs/'))
params.experiment_dir = os.path.abspath(expDir)
train(params, args, local_rank, world_rank, world_size)
if params.distributed:
torch.distributed.barrier()
logging.info('DONE ---- rank %d'%world_rank)