-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest_data_loader.py
36 lines (31 loc) · 1.17 KB
/
test_data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch
from utils import get_data_loader_distributed
import numpy as np
from utils.YParams import YParams
from networks.vit import ViT
import matplotlib.pyplot as plt
params = YParams('./config/ViT.yaml', 'short')
params.global_batch_size = 1
params.local_batch_size = 1
valid_dataloader, dataset_valid = get_data_loader_distributed(params, params.valid_data_path, distributed=False, train=False)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
params.device = device
model = ViT(params)
model = model.to(device)
with torch.no_grad():
for i, data in enumerate(valid_dataloader, 0):
if i >= 1:
break
print("Doing iteration {}".format(i))
inp, tar = map(lambda x: x.to(device, dtype = torch.float), data)
print("input shape = {}".format(inp.shape))
print("target shape = {}".format(tar.shape))
plt.rcParams["figure.figsize"] = (20,20)
plt.figure()
for ch in range(inp.shape[1]):
plt.subplot(inp.shape[1],1, ch+1)
plt.imshow(inp[0,ch,:,:].cpu(), cmap = 'RdBu')
plt.colorbar()
plt.savefig("figs/minibatch_" + str(i) + ".jpg")
gen = model(inp)
print("prediction shape = {}".format(gen.shape))