-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmask_rcnn_fpn_coco_base.py
54 lines (49 loc) · 1.22 KB
/
mask_rcnn_fpn_coco_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
_base_ = [
'./swin/mask-rcnn_swin-t-p4-w7_fpn_1x_coco.py'
]
model = dict(
backbone=dict(
type='MMDET_VHEAT',
post_norm=True,
img_size=512,
layer_scale=1.e-5,
drop_path_rate=0.5,
depths=(2, 2, 18, 2),
dims=128,
out_indices=(0, 1, 2, 3),
pretrained="path/to/pth",
),
neck=dict(in_channels=[128, 256, 512, 1024]),
)
train_dataloader = dict(batch_size=2) # as gpus=8
val_dataloader = dict(batch_size=2)
max_epochs = 12
train_cfg = dict(max_epochs=max_epochs)
# learning rate
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
end=1000),
dict(
type='MultiStepLR',
begin=0,
end=max_epochs,
by_epoch=True,
milestones=[8, 11],
gamma=0.1)
]
# optimizer
optim_wrapper = dict(
type='OptimWrapper',
paramwise_cfg=dict(
custom_keys={
'absolute_pos_embed': dict(decay_mult=0.),
'relative_position_bias_table': dict(decay_mult=0.),
'norm': dict(decay_mult=0.)
}),
optimizer=dict(
_delete_=True,
type='AdamW',
lr=0.0001,
betas=(0.9, 0.999),
weight_decay=0.05))