-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_decoupling.py
391 lines (328 loc) · 17.7 KB
/
train_decoupling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import os
import sys
import torch
import argparse
import logging
import torch.nn as nn
from tqdm import tqdm
# dataset
from data.implement import BasicDataset_without_weight, train_transform
from torch.utils.data import DataLoader
# tensorboard & distrubuted
import torch.distributed as dist
from torch.utils.tensorboard import SummaryWriter
# model
from model import UNet
from modeling.deeplab import *
from optimizer import optim_ranger
from scheduler import scheduler_linear
from loss import loss_bce
from utils import eval_net_unet_dice, eval_net_unet_bfscore, eval_net_unet_miou
from utils.weight_function import BoundaryScore_fast, jaccard_index
miou_func = jaccard_index()
bfscore_func = BoundaryScore_fast()
try:
from itertools import ifilterfalse
except ImportError: # py3k
from itertools import filterfalse as ifilterfalse
def isnan(x):
return x != x
def mean(l, ignore_nan=False, empty=0):
"""
nanmean compatible with generators.
"""
l = iter(l)
if ignore_nan:
l = ifilterfalse(isnan, l)
try:
n = 1
acc = next(l)
except StopIteration:
if empty == 'raise':
raise ValueError('Empty mean')
return empty
for n, v in enumerate(l, 2):
acc += v
if n == 1:
return acc
return acc / n
def iou_binary(preds, labels, EMPTY=1., ignore=None, per_image=True):
"""
IoU for foreground class
binary: 1 foreground, 0 background
"""
if not per_image:
preds, labels = (preds,), (labels,)
ious = []
for pred, label in zip(torch.sigmoid(preds) > 0.5, torch.sigmoid(labels) > 0.5):
intersection = ((label == 1) & (pred == 1)).sum()
union = ((label == 1) | ((pred == 1) & (label != ignore))).sum()
if not union:
iou = EMPTY
else:
iou = float(intersection) / float(union)
ious.append(iou)
iou = mean(ious) # mean accross images if per_image
return 100 * iou, ious
# 利用decoupling论文算法得到idx
def decoupling(mask_pred_teacher, mask_pred_student, threshold):
miou, list_miou = iou_binary(preds=mask_pred_teacher, labels=mask_pred_student)
# find disagreement
disagreement_idx = [i for i in range(len(list_miou)) if list_miou[i] < threshold]
return disagreement_idx
# 只对idx中的样本求loss后更新权重
class criterion_with_idx(nn.Module):
def __init__(self):
super(criterion_with_idx, self).__init__()
def forward(self, true, pred, idx):
loss = 0
for idx_now, sample in enumerate(zip(true, pred)):
sample_true = sample[0]
sample_pred = sample[1]
if idx_now in idx:
sample_loss = loss_bce(sample_true, sample_pred)
loss += sample_loss
return loss / true.shape[0]
def train_decoupling(net_student,
net_teacher,
device,
epochs=5,
lr=0.1,
batch_size=8,
save_cp=True):
global dir_checkpoint
optimizer_teacher = optim_ranger(net_teacher.parameters(), lr=args.lr, weight_decay=0.0005)
scheduler_teacher = scheduler_linear(optimizer_teacher, step_size=25, gamma=0.5)
criterion_teacher = criterion_with_idx()
optimizer_student = optim_ranger(net_student.parameters(), lr=args.lr, weight_decay=0.0005)
scheduler_student = scheduler_linear(optimizer_student, step_size=25, gamma=0.5)
criterion_student = criterion_with_idx()
net_teacher.to(device)
net_student.to(device)
train_dataset = BasicDataset_without_weight(file_csv=args.train_csv,
transform=train_transform)
val_dataset = BasicDataset_without_weight(file_csv=args.valid_csv,
transform=train_transform)
test_dataset = BasicDataset_without_weight(file_csv=args.test_csv,
transform=train_transform)
train_dataloader = DataLoader(
train_dataset, batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True)
valid_dataloader = DataLoader(
val_dataset, batch_size=batch_size, shuffle=False, num_workers=8, pin_memory=True, drop_last=True)
test_dataloader = DataLoader(
test_dataset, batch_size=batch_size, shuffle=False, num_workers=8, pin_memory=True, drop_last=True)
writer = SummaryWriter(comment="_{}".format(args.name))
n_train = len(train_dataset)
n_valid = len(val_dataset)
logging.info(
f'''Starting training:
Epochs: {epochs}
Batch size: {batch_size}
Learning rate: {lr}
Training size: {n_train}
Validation size: {n_valid}
Checkpoints: {save_cp}
Device: {device}
'''
)
global_step = 0
val_score_student = 0
best_valid_score_student = 0
best_bfscore_score_student = 0
best_miou_score_student = 0
val_score_teacher = 0
best_valid_score_teacher = 0
best_bfscore_score_teacher = 0
best_miou_score_teacher = 0
sample_idx = []
epoch_smaple = 0
for epoch in range(epochs):
net_teacher.train()
net_student.train()
epoch_loss_student = 0
epoch_loss_teacher = 0
with tqdm(total=n_train, desc='Epoch {}/{}/val_stu:{}/val_tea:{}/idx:{}'.format(epoch + 1, epochs, val_score_student, val_score_teacher, epoch_smaple, unit='img')) as pbar:
for batch in train_dataloader:
imgs = batch['image']
true_masks = batch['mask']
assert imgs.shape[1] == net_student.n_channels, \
'Network has been defined with {} input channels, '.format(
net_student.n_channels) + 'but loaded images have {} channels. Please check that '.format(
imgs.shape[1]) + 'the images are loaded correctly.'
assert imgs.shape[1] == net_teacher.n_channels, \
'Network has been defined with {} input channels, '.format(
net_teacher.n_channels) + 'but loaded images have {} channels. Please check that '.format(
imgs.shape[1]) + 'the images are loaded correctly.'
imgs = imgs.cuda(non_blocking=True)
true_masks = true_masks.cuda(non_blocking=True)
# pred and choose samples
mask_pred_student = net_student(imgs)
mask_pred_teacher = net_teacher(imgs)
sample_idx = decoupling(mask_pred_teacher, mask_pred_student, threshold=0.95)
if len(sample_idx) == 0:
sample_idx = [0]
epoch_smaple += len(sample_idx)
# student training process
loss_student = criterion_student(mask_pred_student, true_masks, sample_idx)
epoch_loss_student += loss_student.item()
writer.add_scalar('Train/Loss_student', loss_student.item(), global_step=global_step)
optimizer_student.zero_grad()
loss_student.backward(retain_graph=True)
nn.utils.clip_grad_value_(net_student.parameters(), 0.1)
optimizer_student.step()
# teacher training process
loss_teacher = criterion_teacher(mask_pred_teacher, true_masks, sample_idx)
epoch_loss_teacher += loss_teacher.item()
writer.add_scalar('Train/Loss_teacher', loss_teacher.item(), global_step=global_step)
optimizer_teacher.zero_grad()
loss_teacher.backward()
nn.utils.clip_grad_value_(net_teacher.parameters(), 0.1)
optimizer_teacher.step()
pbar.set_postfix(**{'loss_student (batch)': loss_student.item(), 'loss_teacher (batch)': loss_teacher.item()})
pbar.update(imgs.shape[0])
global_step += 1
val_bfscore_student = eval_net_unet_bfscore(net_student, valid_dataloader, device)
val_miouscore_student = eval_net_unet_miou(net_student, valid_dataloader, device)
val_dicescore_student = eval_net_unet_dice(net_student, valid_dataloader, device)
val_score_student = (val_bfscore_student + val_miouscore_student + val_dicescore_student) / 3
val_bfscore_teacher = eval_net_unet_bfscore(net_teacher, valid_dataloader, device)
val_miouscore_teacher = eval_net_unet_miou(net_teacher, valid_dataloader, device)
val_dicescore_teacher = eval_net_unet_dice(net_teacher, valid_dataloader, device)
val_score_teacher = (val_bfscore_teacher + val_miouscore_teacher + val_dicescore_teacher) / 3
scheduler_student.step()
scheduler_teacher.step()
writer.add_scalar('Train/lr_student', optimizer_student.param_groups[0]['lr'], global_step=global_step)
writer.add_scalar('Train/lr_teacher', optimizer_teacher.param_groups[0]['lr'], global_step=global_step)
logging.info('Validation cross entropy for teacher: {}'.format(val_score_teacher))
writer.add_scalar('Valid/val_score_teacher', val_score_teacher, global_step=global_step)
logging.info('Validation cross entropy for student: {}'.format(val_score_student))
writer.add_scalar('Valid/val_score_student', val_score_student, global_step=global_step)
if save_cp:
dir_checkpoint_now = os.path.join(dir_checkpoint, args.name)
if not os.path.exists(dir_checkpoint_now):
os.mkdir(dir_checkpoint_now)
logging.info('Create checkopint directory')
if val_score_teacher > best_valid_score_teacher:
best_valid_score_teacher = val_score_teacher
torch.save(net_teacher.state_dict(), os.path.join(dir_checkpoint_now, 'teacher_best.pth'))
logging.info('Checkpoint {} saved!'.format(epoch + 1))
if val_bfscore_teacher > best_bfscore_score_teacher:
best_bfscore_score_teacher = val_bfscore_teacher
torch.save(net_teacher.state_dict(), os.path.join(dir_checkpoint_now, 'teacher_bfscore_best.pth'))
logging.info('bfscore best Checkpoint {} saved!'.format(epoch + 1))
if val_miouscore_teacher > best_miou_score_teacher:
best_miou_score_teacher = val_miouscore_teacher
torch.save(net_teacher.state_dict(), os.path.join(dir_checkpoint_now, 'teacher_miou_best.pth'))
logging.info('miou best Checkpoint {} saved!'.format(epoch + 1))
if val_score_student > best_valid_score_student:
best_valid_score_student = val_score_student
torch.save(net_student.state_dict(), os.path.join(dir_checkpoint_now, 'student_best.pth'))
logging.info('Checkpoint {} saved!'.format(epoch + 1))
if val_bfscore_student > best_bfscore_score_student:
best_bfscore_score_student = val_bfscore_student
torch.save(net_student.state_dict(), os.path.join(dir_checkpoint_now, 'student_bfscore_best.pth'))
logging.info('bfscore best Checkpoint {} saved!'.format(epoch + 1))
if val_miouscore_student > best_miou_score_student:
best_miou_score_student = val_miouscore_student
torch.save(net_student.state_dict(), os.path.join(dir_checkpoint_now, 'student_miou_best.pth'))
logging.info('miou best Checkpoint {} saved!'.format(epoch + 1))
net_teacher.load_state_dict(torch.load(os.path.join(dir_checkpoint_now, 'teacher_best.pth'), map_location=device))
test_mIoU = eval_net_unet_miou(net_teacher, test_dataloader, device)
logging.info('Teacher Test mIoU: {}'.format(test_mIoU))
writer.add_scalar('test/teacher_mIoU', test_mIoU, global_step=global_step)
test_dice = eval_net_unet_dice(net_teacher, test_dataloader, device)
logging.info('Teacher Test Dice Coeff: {}'.format(test_dice))
writer.add_scalar('test/teacher_Dice', test_dice, global_step=global_step)
test_bfscore = eval_net_unet_bfscore(net_teacher, test_dataloader, device)
logging.info('Teacher Test BFScore: {}'.format(test_bfscore))
writer.add_scalar('test/teacher_BFScore', test_bfscore, global_step=global_step)
net_teacher.load_state_dict(torch.load(os.path.join(dir_checkpoint_now, 'teacher_bfscore_best.pth'), map_location=device))
test_best_bfscore = eval_net_unet_bfscore(net_teacher, test_dataloader, device)
logging.info('Teacher Test Best BFScore: {}'.format(test_best_bfscore))
writer.add_scalar('test/teacher_BFScore_best', test_best_bfscore, global_step=global_step)
net_teacher.load_state_dict(torch.load(os.path.join(dir_checkpoint_now, 'teacher_miou_best.pth'), map_location=device))
test_best_miou = eval_net_unet_miou(net_teacher, test_dataloader, device)
logging.info('Teacher Test Best mIoU: {}'.format(test_best_miou))
writer.add_scalar('test/teacher_mIoU_best', test_best_miou, global_step=global_step)
net_student.load_state_dict(torch.load(os.path.join(dir_checkpoint_now, 'student_best.pth'), map_location=device))
test_mIoU = eval_net_unet_miou(net_student, test_dataloader, device)
logging.info('student Test mIoU: {}'.format(test_mIoU))
writer.add_scalar('test/student_mIoU', test_mIoU, global_step=global_step)
test_dice = eval_net_unet_dice(net_student, test_dataloader, device)
logging.info('student Test Dice Coeff: {}'.format(test_dice))
writer.add_scalar('test/student_Dice', test_dice, global_step=global_step)
test_bfscore = eval_net_unet_bfscore(net_student, test_dataloader, device)
logging.info('student Test BFScore: {}'.format(test_bfscore))
writer.add_scalar('test/student_BFScore', test_bfscore, global_step=global_step)
net_student.load_state_dict(
torch.load(os.path.join(dir_checkpoint_now, 'student_bfscore_best.pth'), map_location=device))
test_best_bfscore = eval_net_unet_bfscore(net_student, test_dataloader, device)
logging.info('student Test Best BFScore: {}'.format(test_best_bfscore))
writer.add_scalar('test/student_BFScore_best', test_best_bfscore, global_step=global_step)
net_student.load_state_dict(
torch.load(os.path.join(dir_checkpoint_now, 'student_miou_best.pth'), map_location=device))
test_best_miou = eval_net_unet_miou(net_student, test_dataloader, device)
logging.info('student Test Best mIoU: {}'.format(test_best_miou))
writer.add_scalar('test/student_mIoU_best', test_best_miou, global_step=global_step)
writer.close()
def get_args():
parser = argparse.ArgumentParser(description='Train the UNet on images and target masks',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-e', '--epochs', metavar='E', type=int, default=1,
help='Number of epochs', dest='epochs')
parser.add_argument('-b', '--batch-size', metavar='B', type=int, nargs='?', default=16,
help='Batch size', dest='batchsize')
parser.add_argument('-l', '--learning-rate', metavar='LR', type=float, nargs='?', default=0.1,
help='Learning rate', dest='lr')
parser.add_argument('-f', '--load', dest='load', type=str, default=False,
help='Load model from a .pth file')
parser.add_argument('-train', '--train_csv', dest='train_csv', type=str, default=False,
help='train csv file_path')
parser.add_argument('-valid', '--valid_csv', dest='valid_csv', type=str, default=False,
help='valid csv file_path')
parser.add_argument('-test', '--test_csv', dest='test_csv', type=str, default=False,
help='test csv file_path')
parser.add_argument('-n', '--name', dest='name', type=str, default="",
help='train name')
parser.add_argument('--local_rank', default=-1, type=int,
help='node rank for distributed training')
return parser.parse_args()
if __name__ == '__main__':
args = get_args()
logging.basicConfig(filename=f'logs/{args.name}.log', level=logging.INFO, format='%(levelname)s: %(message)s')
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
gpus = [0, 1]
net_deeplab = DeepLab(num_classes=1, backbone='resnet', sync_bn=True)
net_deeplab = torch.nn.DataParallel(net_deeplab.to(device), output_device=gpus[0])
net_deeplab.n_classes = 1
net_deeplab.n_channels = 3
dir_checkpoint = 'checkpoints'
# deeplab 加载50epoch的权重
args.load = 'checkpoints/train_deeplabv3+_withoutweight_50/best.pth'
net_deeplab.load_state_dict(torch.load(args.load, map_location=device))
logging.info('Model loaded form {}'.format(args.load))
net_unet = UNet(n_classes=1, n_channels=3)
net_unet = torch.nn.DataParallel(net_unet.to(device), output_device=gpus[0])
net_unet.n_classes = 1
net_unet.n_channels = 3
# unet 加载50epoch的权重
args.load = 'checkpoints/train_iteration_6_50/best.pth'
net_unet.load_state_dict(torch.load(args.load, map_location=device))
logging.info('Model loaded form {}'.format(args.load))
try:
train_decoupling(net_student=net_unet,
net_teacher=net_deeplab,
device=device,
epochs=args.epochs,
batch_size=args.batchsize,
lr=args.lr)
except KeyboardInterrupt:
torch.save(net_unet.state_dict(), 'net_unet_INTERRUPTED.pth')
torch.save(net_deeplab.state_dict(), 'net_deeplab_INTERRUPTED.pth')
logging.info('Saved interrupt')
try:
sys.exit(0)
except SystemExit:
os._exit(0)