-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdecoder.py
64 lines (44 loc) · 1.51 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#%%
from turtle import forward
import torch
import torch.nn.functional as F
import torch.nn as nn
from hamburger import HamBurger
from bricks import SeprableConv2d, ConvRelu, ConvBNRelu, resize
class HamDecoder(nn.Module):
'''SegNext'''
def __init__(self, outChannels, config, enc_embed_dims=[32,64,460,256]):
super().__init__()
ham_channels = config['ham_channels']
self.squeeze = ConvRelu(sum(enc_embed_dims[1:]), ham_channels)
self.ham_attn = HamBurger(ham_channels, config)
self.align = ConvRelu(ham_channels, outChannels)
def forward(self, features):
features = features[1:] # drop stage 1 features b/c low level
features = [resize(feature, size=features[-3].shape[2:], mode='bilinear') for feature in features]
x = torch.cat(features, dim=1)
x = self.squeeze(x)
x = self.ham_attn(x)
x = self.align(x)
return x
#%%
# import torch.nn.functional as F
# def resize(input,
# size=None,
# scale_factor=None,
# mode='nearest',
# align_corners=None,
# warning=True):
# return F.interpolate(input, size, scale_factor, mode, align_corners)
# inputs = [resize(
# level,
# size=x[0].shape[2:],
# mode='bilinear',
# align_corners=False
# ) for level in x]
# for i in range(4):
# print(x[i].shape)
# for i in range(4):
# print(inputs[i].shape)
# inputs = torch.cat(inputs, dim=1)
# print(inputs.shape)