-
Notifications
You must be signed in to change notification settings - Fork 54
/
seq_seq_annot_aami.py
433 lines (372 loc) · 19.1 KB
/
seq_seq_annot_aami.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import numpy as np
import matplotlib.pyplot as plt
import scipy.io as spio
from sklearn.preprocessing import MinMaxScaler
import random
import time
import os
from datetime import datetime
from sklearn.metrics import confusion_matrix
import tensorflow as tf
from imblearn.over_sampling import SMOTE
from sklearn.model_selection import train_test_split
import argparse
random.seed(654)
def read_mitbih(filename, max_time=100, classes= ['F', 'N', 'S', 'V', 'Q'], max_nlabel=100):
def normalize(data):
data = np.nan_to_num(data) # removing NaNs and Infs
data = data - np.mean(data)
data = data / np.std(data)
return data
# read data
data = []
samples = spio.loadmat(filename + ".mat")
samples = samples['s2s_mitbih']
values = samples[0]['seg_values']
labels = samples[0]['seg_labels']
num_annots = sum([item.shape[0] for item in values])
n_seqs = num_annots / max_time
# add all segments(beats) together
l_data = 0
for i, item in enumerate(values):
l = item.shape[0]
for itm in item:
if l_data == n_seqs * max_time:
break
data.append(itm[0])
l_data = l_data + 1
# add all labels together
l_lables = 0
t_lables = []
for i, item in enumerate(labels):
if len(t_lables)==n_seqs*max_time:
break
item= item[0]
for lebel in item:
if l_lables == n_seqs * max_time:
break
t_lables.append(str(lebel))
l_lables = l_lables + 1
del values
data = np.asarray(data)
shape_v = data.shape
data = np.reshape(data, [shape_v[0], -1])
t_lables = np.array(t_lables)
_data = np.asarray([],dtype=np.float64).reshape(0,shape_v[1])
_labels = np.asarray([],dtype=np.dtype('|S1')).reshape(0,)
for cl in classes:
_label = np.where(t_lables == cl)
permute = np.random.permutation(len(_label[0]))
_label = _label[0][permute[:max_nlabel]]
# _label = _label[0][:max_nlabel]
# permute = np.random.permutation(len(_label))
# _label = _label[permute]
_data = np.concatenate((_data, data[_label]))
_labels = np.concatenate((_labels, t_lables[_label]))
data = _data[:(len(_data)/ max_time) * max_time, :]
_labels = _labels[:(len(_data) / max_time) * max_time]
# data = _data
# split data into sublist of 100=se_len values
data = [data[i:i + max_time] for i in range(0, len(data), max_time)]
labels = [_labels[i:i + max_time] for i in range(0, len(_labels), max_time)]
# shuffle
permute = np.random.permutation(len(labels))
data = np.asarray(data)
labels = np.asarray(labels)
data= data[permute]
labels = labels[permute]
print('Records processed!')
return data, labels
def evaluate_metrics(confusion_matrix):
# https://stackoverflow.com/questions/31324218/scikit-learn-how-to-obtain-true-positive-true-negative-false-positive-and-fal
FP = confusion_matrix.sum(axis=0) - np.diag(confusion_matrix)
FN = confusion_matrix.sum(axis=1) - np.diag(confusion_matrix)
TP = np.diag(confusion_matrix)
TN = confusion_matrix.sum() - (FP + FN + TP)
# Sensitivity, hit rate, recall, or true positive rate
TPR = TP / (TP + FN)
# Specificity or true negative rate
TNR = TN / (TN + FP)
# Precision or positive predictive value
PPV = TP / (TP + FP)
# Negative predictive value
NPV = TN / (TN + FN)
# Fall out or false positive rate
FPR = FP / (FP + TN)
# False negative rate
FNR = FN / (TP + FN)
# False discovery rate
FDR = FP / (TP + FP)
# Overall accuracy
ACC = (TP + TN) / (TP + FP + FN + TN)
# ACC_micro = (sum(TP) + sum(TN)) / (sum(TP) + sum(FP) + sum(FN) + sum(TN))
ACC_macro = np.mean(ACC) # to get a sense of effectiveness of our method on the small classes we computed this average (macro-average)
return ACC_macro, ACC, TPR, TNR, PPV
def batch_data(x, y, batch_size):
shuffle = np.random.permutation(len(x))
start = 0
# from IPython.core.debugger import Tracer; Tracer()()
x = x[shuffle]
y = y[shuffle]
while start + batch_size <= len(x):
yield x[start:start + batch_size], y[start:start + batch_size]
start += batch_size
def build_network(inputs, dec_inputs,char2numY,n_channels=10,input_depth=280,num_units=128,max_time=10,bidirectional=False):
_inputs = tf.reshape(inputs, [-1, n_channels, input_depth / n_channels])
# _inputs = tf.reshape(inputs, [-1,input_depth,n_channels])
# #(batch*max_time, 280, 1) --> (N, 280, 18)
conv1 = tf.layers.conv1d(inputs=_inputs, filters=32, kernel_size=2, strides=1,
padding='same', activation=tf.nn.relu)
max_pool_1 = tf.layers.max_pooling1d(inputs=conv1, pool_size=2, strides=2, padding='same')
conv2 = tf.layers.conv1d(inputs=max_pool_1, filters=64, kernel_size=2, strides=1,
padding='same', activation=tf.nn.relu)
max_pool_2 = tf.layers.max_pooling1d(inputs=conv2, pool_size=2, strides=2, padding='same')
conv3 = tf.layers.conv1d(inputs=max_pool_2, filters=128, kernel_size=2, strides=1,
padding='same', activation=tf.nn.relu)
shape = conv3.get_shape().as_list()
data_input_embed = tf.reshape(conv3, (-1, max_time, shape[1] * shape[2]))
# timesteps = max_time
#
# lstm_in = tf.unstack(data_input_embed, timesteps, 1)
# lstm_size = 128
# # Get lstm cell output
# # Add LSTM layers
# lstm_cell = tf.contrib.rnn.BasicLSTMCell(lstm_size)
# data_input_embed, states = tf.contrib.rnn.static_rnn(lstm_cell, lstm_in, dtype=tf.float32)
# data_input_embed = tf.stack(data_input_embed, 1)
# shape = data_input_embed.get_shape().as_list()
embed_size = 10 # 128 lstm_size # shape[1]*shape[2]
# Embedding layers
output_embedding = tf.Variable(tf.random_uniform((len(char2numY), embed_size), -1.0, 1.0), name='dec_embedding')
data_output_embed = tf.nn.embedding_lookup(output_embedding, dec_inputs)
with tf.variable_scope("encoding") as encoding_scope:
if not bidirectional:
# Regular approach with LSTM units
lstm_enc = tf.contrib.rnn.LSTMCell(num_units)
_, last_state = tf.nn.dynamic_rnn(lstm_enc, inputs=data_input_embed, dtype=tf.float32)
else:
# Using a bidirectional LSTM architecture instead
enc_fw_cell = tf.contrib.rnn.LSTMCell(num_units)
enc_bw_cell = tf.contrib.rnn.LSTMCell(num_units)
((enc_fw_out, enc_bw_out), (enc_fw_final, enc_bw_final)) = tf.nn.bidirectional_dynamic_rnn(
cell_fw=enc_fw_cell,
cell_bw=enc_bw_cell,
inputs=data_input_embed,
dtype=tf.float32)
enc_fin_c = tf.concat((enc_fw_final.c, enc_bw_final.c), 1)
enc_fin_h = tf.concat((enc_fw_final.h, enc_bw_final.h), 1)
last_state = tf.contrib.rnn.LSTMStateTuple(c=enc_fin_c, h=enc_fin_h)
with tf.variable_scope("decoding") as decoding_scope:
if not bidirectional:
lstm_dec = tf.contrib.rnn.LSTMCell(num_units)
else:
lstm_dec = tf.contrib.rnn.LSTMCell(2 * num_units)
dec_outputs, _ = tf.nn.dynamic_rnn(lstm_dec, inputs=data_output_embed, initial_state=last_state)
logits = tf.layers.dense(dec_outputs, units=len(char2numY), use_bias=True)
return logits
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=500)
parser.add_argument('--max_time', type=int, default=10)
parser.add_argument('--test_steps', type=int, default=10)
parser.add_argument('--batch_size', type=int, default=20)
parser.add_argument('--data_dir', type=str, default='data/s2s_mitbih_aami')
parser.add_argument('--bidirectional', type=str2bool, default=str2bool('False'))
# parser.add_argument('--lstm_layers', type=int, default=2)
parser.add_argument('--num_units', type=int, default=128)
parser.add_argument('--n_oversampling', type=int, default=10000)
parser.add_argument('--checkpoint_dir', type=str, default='checkpoints-seq2seq')
parser.add_argument('--ckpt_name', type=str, default='seq2seq_mitbih.ckpt')
parser.add_argument('--classes', nargs='+', type=chr,
default=['F','N', 'S','V'])
args = parser.parse_args()
run_program(args)
def run_program(args):
print(args)
max_time = args.max_time # 5 3 second best 10# 40 # 100
epochs = args.epochs # 300
batch_size = args.batch_size # 10
num_units = args.num_units
bidirectional = args.bidirectional
# lstm_layers = args.lstm_layers
n_oversampling = args.n_oversampling
checkpoint_dir = args.checkpoint_dir
ckpt_name = args.ckpt_name
test_steps = args.test_steps
classes= args.classes
filename = args.data_dir
X, Y = read_mitbih(filename,max_time,classes=classes,max_nlabel=100000) #11000
print ("# of sequences: ", len(X))
input_depth = X.shape[2]
n_channels = 10
classes = np.unique(Y)
char2numY = dict(zip(classes, range(len(classes))))
n_classes = len(classes)
print ('Classes: ', classes)
for cl in classes:
ind = np.where(classes == cl)[0][0]
print (cl, len(np.where(Y.flatten()==cl)[0]))
# char2numX['<PAD>'] = len(char2numX)
# num2charX = dict(zip(char2numX.values(), char2numX.keys()))
# max_len = max([len(date) for date in x])
#
# x = [[char2numX['<PAD>']]*(max_len - len(date)) +[char2numX[x_] for x_ in date] for date in x]
# print(''.join([num2charX[x_] for x_ in x[4]]))
# x = np.array(x)
char2numY['<GO>'] = len(char2numY)
num2charY = dict(zip(char2numY.values(), char2numY.keys()))
Y = [[char2numY['<GO>']] + [char2numY[y_] for y_ in date] for date in Y]
Y = np.array(Y)
x_seq_length = len(X[0])
y_seq_length = len(Y[0])- 1
# Placeholders
inputs = tf.placeholder(tf.float32, [None, max_time, input_depth], name = 'inputs')
targets = tf.placeholder(tf.int32, (None, None), 'targets')
dec_inputs = tf.placeholder(tf.int32, (None, None), 'output')
# logits = build_network(inputs,dec_inputs=dec_inputs)
logits = build_network(inputs, dec_inputs, char2numY, n_channels=n_channels, input_depth=input_depth, num_units=num_units, max_time=max_time,
bidirectional=bidirectional)
# decoder_prediction = tf.argmax(logits, 2)
# confusion = tf.confusion_matrix(labels=tf.argmax(targets, 1), predictions=tf.argmax(logits, 2), num_classes=len(char2numY) - 1)# it is wrong
# mean_accuracy,update_mean_accuracy = tf.metrics.mean_per_class_accuracy(labels=targets, predictions=decoder_prediction, num_classes=len(char2numY) - 1)
with tf.name_scope("optimization"):
# Loss function
vars = tf.trainable_variables()
beta = 0.001
lossL2 = tf.add_n([tf.nn.l2_loss(v) for v in vars
if 'bias' not in v.name]) * beta
loss = tf.contrib.seq2seq.sequence_loss(logits, targets, tf.ones([batch_size, y_seq_length]))
# Optimizer
loss = tf.reduce_mean(loss + lossL2)
optimizer = tf.train.RMSPropOptimizer(1e-3).minimize(loss)
# split the dataset into the training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)
# over-sampling: SMOTE
X_train = np.reshape(X_train,[X_train.shape[0]*X_train.shape[1],-1])
y_train= y_train[:,1:].flatten()
nums = []
for cl in classes:
ind = np.where(classes == cl)[0][0]
nums.append(len(np.where(y_train.flatten()==ind)[0]))
# ratio={0:nums[3],1:nums[1],2:nums[3],3:nums[3]} # the best with 11000 for N
ratio={0:n_oversampling,1:nums[1],2:n_oversampling,3:n_oversampling}
sm = SMOTE(random_state=12,ratio=ratio)
X_train, y_train = sm.fit_sample(X_train, y_train)
X_train = X_train[:(X_train.shape[0]/max_time)*max_time,:]
y_train = y_train[:(X_train.shape[0]/max_time)*max_time]
X_train = np.reshape(X_train,[-1,X_test.shape[1],X_test.shape[2]])
y_train = np.reshape(y_train,[-1,y_test.shape[1]-1,])
y_train= [[char2numY['<GO>']] + [y_ for y_ in date] for date in y_train]
y_train = np.array(y_train)
print ('Classes in the training set: ', classes)
for cl in classes:
ind = np.where(classes == cl)[0][0]
print (cl, len(np.where(y_train.flatten()==ind)[0]))
print ("------------------y_train samples--------------------")
for ii in range(2):
print(''.join([num2charY[y_] for y_ in list(y_train[ii+5])]))
print ("------------------y_test samples--------------------")
for ii in range(2):
print(''.join([num2charY[y_] for y_ in list(y_test[ii+5])]))
def test_model():
# source_batch, target_batch = next(batch_data(X_test, y_test, batch_size))
acc_track = []
sum_test_conf = []
for batch_i, (source_batch, target_batch) in enumerate(batch_data(X_test, y_test, batch_size)):
dec_input = np.zeros((len(source_batch), 1)) + char2numY['<GO>']
for i in range(y_seq_length):
batch_logits = sess.run(logits,
feed_dict={inputs: source_batch, dec_inputs: dec_input})
prediction = batch_logits[:, -1].argmax(axis=-1)
dec_input = np.hstack([dec_input, prediction[:, None]])
# acc_track.append(np.mean(dec_input == target_batch))
acc_track.append(dec_input[:, 1:] == target_batch[:, 1:])
y_true= target_batch[:, 1:].flatten()
y_pred = dec_input[:, 1:].flatten()
sum_test_conf.append(confusion_matrix(y_true, y_pred,labels=range(len(char2numY)-1)))
sum_test_conf= np.mean(np.array(sum_test_conf, dtype=np.float32), axis=0)
# print('Accuracy on test set is: {:>6.4f}'.format(np.mean(acc_track)))
# mean_p_class, accuracy_classes = sess.run([mean_accuracy, update_mean_accuracy],
# feed_dict={inputs: source_batch,
# dec_inputs: dec_input[:, :-1],
# targets: target_batch[:, 1:]})
# print (mean_p_class)
# print (accuracy_classes)
acc_avg, acc, sensitivity, specificity, PPV = evaluate_metrics(sum_test_conf)
print('Average Accuracy is: {:>6.4f} on test set'.format(acc_avg))
for index_ in range(n_classes):
print("\t{} rhythm -> Sensitivity: {:1.4f}, Specificity : {:1.4f}, Precision (PPV) : {:1.4f}, Accuracy : {:1.4f}".format(classes[index_],
sensitivity[
index_],
specificity[
index_],PPV[index_],
acc[index_]))
print("\t Average -> Sensitivity: {:1.4f}, Specificity : {:1.4f}, Precision (PPV) : {:1.4f}, Accuracy : {:1.4f}".format(np.mean(sensitivity),np.mean(specificity),np.mean(PPV),np.mean(acc)))
return acc_avg, acc, sensitivity, specificity, PPV
loss_track = []
def count_prameters():
print ('# of Params: ', np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]))
count_prameters()
if (os.path.exists(checkpoint_dir) == False):
os.mkdir(checkpoint_dir)
# train the graph
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
saver = tf.train.Saver()
print(str(datetime.now()))
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
pre_acc_avg = 0.0
if ckpt and ckpt.model_checkpoint_path:
# # Restore
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
# saver.restore(session, os.path.join(checkpoint_dir, ckpt_name))
saver.restore(sess, tf.train.latest_checkpoint(checkpoint_dir))
# or 'load meta graph' and restore weights
# saver = tf.train.import_meta_graph(ckpt_name+".meta")
# saver.restore(session,tf.train.latest_checkpoint(checkpoint_dir))
test_model()
else:
for epoch_i in range(epochs):
start_time = time.time()
train_acc = []
for batch_i, (source_batch, target_batch) in enumerate(batch_data(X_train, y_train, batch_size)):
_, batch_loss, batch_logits = sess.run([optimizer, loss, logits],
feed_dict = {inputs: source_batch,
dec_inputs: target_batch[:, :-1],
targets: target_batch[:, 1:]})
loss_track.append(batch_loss)
train_acc.append(batch_logits.argmax(axis=-1) == target_batch[:,1:])
# mean_p_class,accuracy_classes = sess.run([mean_accuracy,update_mean_accuracy],
# feed_dict={inputs: source_batch,
# dec_inputs: target_batch[:, :-1],
# targets: target_batch[:, 1:]})
# accuracy = np.mean(batch_logits.argmax(axis=-1) == target_batch[:,1:])
accuracy = np.mean(train_acc)
print('Epoch {:3} Loss: {:>6.3f} Accuracy: {:>6.4f} Epoch duration: {:>6.3f}s'.format(epoch_i, batch_loss,
accuracy, time.time() - start_time))
if epoch_i%test_steps==0:
acc_avg, acc, sensitivity, specificity, PPV= test_model()
print('loss {:.4f} after {} epochs (batch_size={})'.format(loss_track[-1], epoch_i + 1, batch_size))
save_path = os.path.join(checkpoint_dir, ckpt_name)
saver.save(sess, save_path)
print("Model saved in path: %s" % save_path)
# if np.nan_to_num(acc_avg) > pre_acc_avg: # save the better model based on the f1 score
# print('loss {:.4f} after {} epochs (batch_size={})'.format(loss_track[-1], epoch_i + 1, batch_size))
# pre_acc_avg = acc_avg
# save_path =os.path.join(checkpoint_dir, ckpt_name)
# saver.save(sess, save_path)
# print("The best model (till now) saved in path: %s" % save_path)
plt.plot(loss_track)
plt.show()
print(str(datetime.now()))
# test_model()
if __name__ == '__main__':
main()