-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_UNet.py
107 lines (95 loc) · 4.17 KB
/
test_UNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import numpy as np
from collections import OrderedDict
import torch
import torch.nn as nn
from torchsummary import summary
import torch.nn.functional as F
class UNet3D(nn.Module):
def __init__(self, in_channels=1, out_channels=3, init_features=64):
"""
Implementations based on the Unet3D paper: https://arxiv.org/abs/1606.06650
"""
super(UNet3D, self).__init__()
features = init_features
self.encoder1 = UNet3D._block(in_channels, features, name="enc1")
self.pool1 = nn.MaxPool3d(kernel_size=2, stride=2)
self.encoder2 = UNet3D._block(features, features * 2, name="enc2")
self.pool2 = nn.MaxPool3d(kernel_size=2, stride=2)
self.encoder3 = UNet3D._block(features * 2, features * 4, name="enc3")
self.pool3 = nn.MaxPool3d(kernel_size=2, stride=2)
self.encoder4 = UNet3D._block(features * 4, features * 8, name="enc4")
self.pool4 = nn.MaxPool3d(kernel_size=2, stride=2)
self.bottleneck = UNet3D._block(features * 8, features * 16, name="bottleneck")
self.upconv4 = nn.ConvTranspose3d(
features * 16, features * 8, kernel_size=2, stride=2
)
self.decoder4 = UNet3D._block((features * 8) * 2 , features * 8, name="dec4")
self.upconv3 = nn.ConvTranspose3d(
features * 8, features * 4, kernel_size=2, stride=2
)
self.decoder3 = UNet3D._block((features * 4) * 2, features * 4, name="dec3")
self.upconv2 = nn.ConvTranspose3d(
features * 4, features * 2, kernel_size=2, stride=2
)
self.decoder2 = UNet3D._block((features * 2) * 2, features * 2, name="dec2")
self.upconv1 = nn.ConvTranspose3d(
features * 2, features, kernel_size=2, stride=2
)
self.decoder1 = UNet3D._block(features * 2, features, name="dec1")
self.conv = nn.Conv3d(
in_channels=features, out_channels=out_channels, kernel_size=1
)
def forward(self, query_points , x):
implicit_features = []
enc1 = self.encoder1(x)
enc2 = self.encoder2(self.pool1(enc1))
enc3 = self.encoder3(self.pool2(enc2))
enc4 = self.encoder4(self.pool3(enc3))
bottleneck = self.bottleneck(self.pool4(enc4))
dec4 = self.upconv4(bottleneck)
dec4 = torch.cat((dec4, enc4), dim=1)
dec4 = self.decoder4(dec4)
dec3 = self.upconv3(dec4)
dec3 = torch.cat((dec3, enc3), dim=1)
dec3 = self.decoder3(dec3)
dec2 = self.upconv2(dec3)
dec2 = torch.cat((dec2, enc2), dim=1)
dec2 = self.decoder2(dec2)
dec1 = self.upconv1(dec2)
dec1 = torch.cat((dec1, enc1), dim=1)
dec1 = self.decoder1(dec1)
implicit_features = F.grid_sample(dec1, query_points.unsqueeze(2).unsqueeze(3).float(),padding_mode= 'border', align_corners=False)
outputs = self.conv(implicit_features)
return outputs
@staticmethod
def _block(in_channels, features, name):
return nn.Sequential(
OrderedDict(
[
(
name + "conv1",
nn.Conv3d(
in_channels=in_channels,
out_channels=features,
kernel_size=3,
padding=1,
bias=True,
),
),
(name + "norm1", nn.BatchNorm3d(num_features=features)),
(name + "relu1", nn.ReLU(inplace=True)),
(
name + "conv2",
nn.Conv3d(
in_channels=features,
out_channels=features,
kernel_size=3,
padding=1,
bias=True,
),
),
(name + "norm2", nn.BatchNorm3d(num_features=features)),
(name + "relu2", nn.ReLU(inplace=True)),
]
)
)