-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstants.py
57 lines (37 loc) · 962 Bytes
/
constants.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# learning rate
LR = 0.000_1
# dataset to be used
DATASET_NAME = "amazon_electronics_computers"
# dropout rate
DROPOUT = 0.3
BATCH_SIZE = 10_000
# number of epochs
EPOCHS = 50_000
# output size of the first conv layer
CONV1_OUT_SIZE = 256
CONV2_OUT_SIZE = 128
# embedding size
CONV_MU_OUT_SIZE = 64
CONV_VAR_OUT_SIZE = 64
PATIENCE = 10
SEED = 93
POS_WIGHT = 0
SHARE_FIRST = False
LEAVE_INTRA_CLUSTERS = True
COUPLES_TRAIN = False
MATRIX_OPERATIONS = False
SINGLE_MODELS = True
COUPLE_AND_SINGLE = True
FC_OUTPUT_DIMENSION = 64
USE_FCS = True
N_CLUSTERS = 3
# if true, than the adv loss is calculated considering
# as lable [1/N_CLUSTERS]*N_CLUSTERS in order to give to all the nodes
# the same sort of class
LABEL_OF_ALL_1 = True
MSE_LOSS = False
TRAIN_ALSO_CLASSIFIER = False
NUM_EPOCHS_ADV_LOSS = 5
# if True the shared model with OHE adv loss updates the gradients
# as if we are classifying. SHOULD STAY FALSE
NON_NEG_GRAD = False