-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtrain_crosspoint.py
262 lines (212 loc) · 10.7 KB
/
train_crosspoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from __future__ import print_function
import os
import random
import argparse
import torch
import math
import numpy as np
import wandb
from lightly.loss.ntx_ent_loss import NTXentLoss
import time
from sklearn.svm import SVC
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR
import torchvision.transforms as transforms
from torchvision.models import resnet50, resnet18
from torch.utils.data import DataLoader
from datasets.data import ShapeNetRender, ModelNet40SVM
from models.dgcnn import DGCNN, ResNet, DGCNN_partseg
from util import IOStream, AverageMeter
def _init_():
if not os.path.exists('checkpoints'):
os.makedirs('checkpoints')
if not os.path.exists('checkpoints/'+args.exp_name):
os.makedirs('checkpoints/'+args.exp_name)
if not os.path.exists('checkpoints/'+args.exp_name+'/'+'models'):
os.makedirs('checkpoints/'+args.exp_name+'/'+'models')
def train(args, io):
wandb.init(project="CrossPoint", name=args.exp_name)
transform = transforms.Compose([transforms.Resize((224, 224)),
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
train_loader = DataLoader(ShapeNetRender(transform, n_imgs = 2), num_workers=0,
batch_size=args.batch_size, shuffle=True, drop_last=True)
device = torch.device("cuda" if args.cuda else "cpu")
#Try to load models
if args.model == 'dgcnn':
point_model = DGCNN(args).to(device)
elif args.model == 'dgcnn_seg':
point_model = DGCNN_partseg(args).to(device)
else:
raise Exception("Not implemented")
img_model = ResNet(resnet50(), feat_dim = 2048)
img_model = img_model.to(device)
wandb.watch(point_model)
if args.resume:
model.load_state_dict(torch.load(args.model_path))
print("Model Loaded !!")
parameters = list(point_model.parameters()) + list(img_model.parameters())
if args.use_sgd:
print("Use SGD")
opt = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=1e-6)
else:
print("Use Adam")
opt = optim.Adam(parameters, lr=args.lr, weight_decay=1e-6)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(opt, T_max=args.epochs, eta_min=0, last_epoch=-1)
criterion = NTXentLoss(temperature = 0.1).to(device)
best_acc = 0
for epoch in range(args.start_epoch, args.epochs):
lr_scheduler.step()
####################
# Train
####################
train_losses = AverageMeter()
train_imid_losses = AverageMeter()
train_cmid_losses = AverageMeter()
point_model.train()
img_model.train()
wandb_log = {}
print(f'Start training epoch: ({epoch}/{args.epochs})')
for i, ((data_t1, data_t2), imgs) in enumerate(train_loader):
data_t1, data_t2, imgs = data_t1.to(device), data_t2.to(device), imgs.to(device)
batch_size = data_t1.size()[0]
opt.zero_grad()
data = torch.cat((data_t1, data_t2))
data = data.transpose(2, 1).contiguous()
_, point_feats, _ = point_model(data)
img_feats = img_model(imgs)
point_t1_feats = point_feats[:batch_size, :]
point_t2_feats = point_feats[batch_size: , :]
loss_imid = criterion(point_t1_feats, point_t2_feats)
point_feats = torch.stack([point_t1_feats,point_t2_feats]).mean(dim=0)
loss_cmid = criterion(point_feats, img_feats)
total_loss = loss_imid + loss_cmid
total_loss.backward()
opt.step()
train_losses.update(total_loss.item(), batch_size)
train_imid_losses.update(loss_imid.item(), batch_size)
train_cmid_losses.update(loss_cmid.item(), batch_size)
if i % args.print_freq == 0:
print('Epoch (%d), Batch(%d/%d), loss: %.6f, imid loss: %.6f, cmid loss: %.6f ' % (epoch, i, len(train_loader), train_losses.avg, train_imid_losses.avg, train_cmid_losses.avg))
wandb_log['Train Loss'] = train_losses.avg
wandb_log['Train IMID Loss'] = train_imid_losses.avg
wandb_log['Train CMID Loss'] = train_cmid_losses.avg
outstr = 'Train %d, loss: %.6f' % (epoch, train_losses.avg)
io.cprint(outstr)
# Testing
train_val_loader = DataLoader(ModelNet40SVM(partition='train', num_points=1024), batch_size=128, shuffle=True)
test_val_loader = DataLoader(ModelNet40SVM(partition='test', num_points=1024), batch_size=128, shuffle=True)
feats_train = []
labels_train = []
point_model.eval()
for i, (data, label) in enumerate(train_val_loader):
labels = list(map(lambda x: x[0],label.numpy().tolist()))
data = data.permute(0, 2, 1).to(device)
with torch.no_grad():
feats = point_model(data)[2]
feats = feats.detach().cpu().numpy()
for feat in feats:
feats_train.append(feat)
labels_train += labels
feats_train = np.array(feats_train)
labels_train = np.array(labels_train)
feats_test = []
labels_test = []
for i, (data, label) in enumerate(test_val_loader):
labels = list(map(lambda x: x[0],label.numpy().tolist()))
data = data.permute(0, 2, 1).to(device)
with torch.no_grad():
feats = point_model(data)[2]
feats = feats.detach().cpu().numpy()
for feat in feats:
feats_test.append(feat)
labels_test += labels
feats_test = np.array(feats_test)
labels_test = np.array(labels_test)
model_tl = SVC(C = 0.1, kernel ='linear')
model_tl.fit(feats_train, labels_train)
test_accuracy = model_tl.score(feats_test, labels_test)
wandb_log['Linear Accuracy'] = test_accuracy
print(f"Linear Accuracy : {test_accuracy}")
if test_accuracy > best_acc:
best_acc = test_accuracy
print('==> Saving Best Model...')
save_file = os.path.join(f'checkpoints/{args.exp_name}/models/',
'best_model.pth'.format(epoch=epoch))
torch.save(point_model.state_dict(), save_file)
save_img_model_file = os.path.join(f'checkpoints/{args.exp_name}/models/',
'img_model_best.pth')
torch.save(img_model.state_dict(), save_img_model_file)
if epoch % args.save_freq == 0:
print('==> Saving...')
save_file = os.path.join(f'checkpoints/{args.exp_name}/models/',
'ckpt_epoch_{epoch}.pth'.format(epoch=epoch))
torch.save(point_model.state_dict(), save_file)
wandb.log(wandb_log)
print('==> Saving Last Model...')
save_file = os.path.join(f'checkpoints/{args.exp_name}/models/',
'ckpt_epoch_last.pth')
torch.save(point_model.state_dict(), save_file)
save_img_model_file = os.path.join(f'checkpoints/{args.exp_name}/models/',
'img_model_last.pth')
torch.save(img_model.state_dict(), save_img_model_file)
if __name__ == "__main__":
# Training settings
parser = argparse.ArgumentParser(description='Point Cloud Recognition')
parser.add_argument('--exp_name', type=str, default='exp', metavar='N',
help='Name of the experiment')
parser.add_argument('--model', type=str, default='dgcnn', metavar='N',
choices=['dgcnn', 'dgcnn_seg'],
help='Model to use, [pointnet, dgcnn]')
parser.add_argument('--batch_size', type=int, default=16, metavar='batch_size',
help='Size of batch)')
parser.add_argument('--test_batch_size', type=int, default=16, metavar='batch_size',
help='Size of batch)')
parser.add_argument('--epochs', type=int, default=250, metavar='N',
help='number of episode to train ')
parser.add_argument('--start_epoch', type=int, default=0, metavar='N',
help='number of episode to train ')
parser.add_argument('--use_sgd', action="store_true", help='Use SGD')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate (default: 0.001, 0.1 if using sgd)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--no_cuda', type=bool, default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--eval', type=bool, default=False,
help='evaluate the model')
parser.add_argument('--num_points', type=int, default=2048,
help='num of points to use')
parser.add_argument('--dropout', type=float, default=0.5,
help='dropout rate')
parser.add_argument('--emb_dims', type=int, default=1024, metavar='N',
help='Dimension of embeddings')
parser.add_argument('--k', type=int, default=20, metavar='N',
help='Num of nearest neighbors to use')
parser.add_argument('--resume', action="store_true", help='resume from checkpoint')
parser.add_argument('--model_path', type=str, default='', metavar='N',
help='Pretrained model path')
parser.add_argument('--save_freq', type=int, default=50, help='save frequency')
parser.add_argument('--print_freq', type=int, default=50, help='print frequency')
args = parser.parse_args()
_init_()
io = IOStream('checkpoints/' + args.exp_name + '/run.log')
io.cprint(str(args))
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
io.cprint(
'Using GPU : ' + str(torch.cuda.current_device()) + ' from ' + str(torch.cuda.device_count()) + ' devices')
torch.cuda.manual_seed(args.seed)
else:
io.cprint('Using CPU')
if not args.eval:
train(args, io)
else:
test(args, io)