-
Notifications
You must be signed in to change notification settings - Fork 2
/
slo2unc2.mod
163 lines (122 loc) · 3.04 KB
/
slo2unc2.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
TITLE slo2unc2
: slo2 channels coupled with unc2 calcium channels (1:1 stoichiometry)
: From Nicoletti et al. PloS One 2019 (https://doi.org/10.1371/journal.pone.0218738)
UNITS {
(mA) = (milliamp)
(S) = (siemens)
(mV) = (millivolt)
(molar)=(1/liter)
FARADAY = (faraday) (coulombs)
(uM) = (micromolar)
(pS) = (picosiemens)
}
NEURON {
SUFFIX slo2unc2
USEION k READ ek WRITE ik
USEION ca READ eca
RANGE gbar
EXTERNAL munc2_unc2, hunc2_unc2
}
PARAMETER{
v (mV)
cai (uM)
fondo=0.05 (uM)
ek (mV)
eca (mV)
munc2_unc2
hunc2_unc2
celsius (degC)
gbar=0.1 (S/cm2)
wom1=0.896395 (/ms)
wyx1=0.019405 (/mV)
kyx1=3294.553404 (uM)
nyx1=0.000010 (1)
wop1=0.026719 (/ms)
wxy1=-0.024123 (/mV)
kxy1=93.449423 (/ms)
nxy1=1.835067 (1)
r=13e-9 (m)
d=250e-12 (um2/s)
kb=500e6 (/M-s)
b=30e-6 (M)
gsc=40e-12 (S)
pi=3.14
va_unc2=-12.17 (mV)
ka_unc2=3.97 (mV)
vi_unc2=-52.47 (mV)
ki_unc2=5.6 (mV)
stm2=25 (mV)
sth2=25 (mV)
p1tmunc2=1.4969 (ms)
p2tmunc2=-8.1761 (mV)
p3tmunc2=9.0753 (mV)
p4tmunc2=15.3456 (mV)
p5tmunc2=0.1029 (ms)
p1thunc2=83.8037 (ms)
p2thunc2=52.8997 (mV)
p3thunc2=3.4557 (mV)
p4thunc2=72.0995 (ms)
p5thunc2=23.9009 (mV)
p6thunc2=3.5903 (mV)
shifthunc2=30
shiftmunc2=30
consthunc2=1.7
constmunc2=3
func2=1
f2unc2=1
fp3=1
fp4=1
fp5=1
}
ASSIGNED{
ik (mA/cm2)
minf
tslo2
alpha
beta
}
STATE {
m
}
BREAKPOINT {
SOLVE states METHOD cnexp
ik = gbar*m*hunc2_unc2*(v-ek)
}
INITIAL {
rates(calcio(v), v)
m=minf
}
DERIVATIVE states {
rates(calcio(v), v)
m' = (minf - m)/tslo2
}
PROCEDURE rates(calcio(v),v (mV)){
alpha=minfunc2(v)/tmunc2(v)
beta=(1/tmunc2(v))-alpha
minf=(munc2_unc2*kop2(calcio(v),v)*(alpha+beta+kcm2(v)))/((kop2(calcio(v),v)+kom2(calcio(v),v))*(kcm2(v)+alpha)+(beta*kcm2(v)))
tslo2=((alpha+beta+kcm2(v))/((kop2(calcio(v),v)+kom2(calcio(v),v))*(kcm2(v)+alpha)+(beta*kcm2(v))))
}
FUNCTION kcm2(v (mV)){
kcm2=wom1*exp(-wyx1*v)*(1/(1+pow(fondo/kyx1,nyx1)))
}
FUNCTION kom2(calcio(v),v (mV)){
kom2=wom1*exp(-wyx1*v)*(1/(1+pow(calcio(v)/kyx1,nyx1)))
}
FUNCTION kop2(calcio(v),v (mV)){
kop2=wop1*exp(-wxy1*v)*(1/(1+pow(kxy1/calcio(v),nxy1)))
}
FUNCTION calcio(v (mV)){
calcio=(((fabs(gsc*(v-eca)*1e-3)/(8*pi*r*d*FARADAY))*exp(-r/sqrt(d/(kb*b))))*1e6*1e-3)+fondo
}
FUNCTION minfunc2(v(mV)){
minfunc2=1/(1+exp(-(v-va_unc2+stm2)/(ka_unc2*func2)))
}
FUNCTION hinfunc2(v(mV)){
hinfunc2= 1/(1+exp((v-vi_unc2+sth2)/(ki_unc2*f2unc2)))
}
FUNCTION tmunc2(v(mV)){
tmunc2=(p1tmunc2/(exp(-(v-p2tmunc2+shiftmunc2)/(p3tmunc2*fp3))+exp((v-p2tmunc2+shiftmunc2)/(p4tmunc2*fp4)))+p5tmunc2)*constmunc2
}
FUNCTION thunc2(v(mV)){
thunc2=(p1thunc2/(1+exp((v-p2thunc2+shifthunc2)/(p3thunc2*fp5)))+p4thunc2/(1+exp(-(v-p5thunc2+shifthunc2)/(p6thunc2*fp5))))*consthunc2
}