-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathslo1unc2.mod
173 lines (137 loc) · 3.19 KB
/
slo1unc2.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
TITLE slo1unc2
: slo1 channels coupled with unc2 calcium channels (1:1 stoichiometry)
: From Nicoletti et al. PloS One 2019 (https://doi.org/10.1371/journal.pone.0218738)
UNITS {
(mA) = (milliamp)
(S) = (siemens)
(mV) = (millivolt)
(pS) = (picosiemens)
(molar)=(1/liter)
(uM) = (micromolar)
FARADAY = (faraday) (coulombs)
}
NEURON {
SUFFIX slo1unc2
USEION k READ ek WRITE ik
USEION ca READ eca
RANGE gbar
EXTERNAL munc2_unc2, hunc2_unc2
}
PARAMETER{
v (mV)
cai (uM)
bkg=0.05 (uM)
ek (mV)
eca (mV)
munc2_unc2
hunc2_unc2
celsius (degC)
gbar=.11 (S/cm2)
wom=3.152961 (/ms)
wyx=0.012643 (/mV)
kyx=34.338784 (uM)
nyx=0.000100 (1)
wop=0.156217 (/ms)
wxy=-0.027527 (/mV)
kxy=55.726186 (/ms)
nxy=1.299198 (1)
r=13e-9 (nm)
d=250e-12 (um2/s)
kb=500e6 (/M-s)
b=30e-6 (M)
gsc=40e-12 (S)
pi=3.14
va_unc2=-12.17 (mV)
ka_unc2=3.97 (mV)
vi_unc2=-52.47 (mV)
ki_unc2=5.6 (mV)
stm2=25 (mV)
sth2=25 (mV)
p1tmunc2=1.4969 (ms)
p2tmunc2=-8.1761 (mV)
p3tmunc2=9.0753 (mV)
p4tmunc2=15.3456 (mV)
p5tmunc2=0.1029 (ms)
p1thunc2=83.8037 (ms)
p2thunc2=52.8997 (mV)
p3thunc2=3.4557 (mV)
p4thunc2=72.0995 (ms)
p5thunc2=23.9009 (mV)
p6thunc2=3.5903 (mV)
shifthunc2=30
shiftmunc2=30
consthunc2=1.7
constmunc2=3
func2=1
f2unc2=1
fp3=1
fp4=1
fp5=1
}
ASSIGNED{
ik (mA/cm2)
g (S/cm2)
curr (mA/cm2)
minf
tslo1
alpha1
beta1
ts(ms)
v1
v2
ta (ms)
ti (ms)
}
STATE {
m
}
BREAKPOINT {
SOLVE states METHOD cnexp
ik = gbar*m*hunc2_unc2*(v-ek)
}
INITIAL {
rates(calcium(v), v)
m=minf
}
DERIVATIVE states {
rates(calcium(v), v)
m' = (minf - m)/tslo1
}
PROCEDURE rates(calcium(v),v (mV)){
alpha1=minfUNC2(v)/tmUNC2(v)
beta1=(1/tmUNC2(v))-alpha1
minf=(munc2_unc2*kop(calcium(v),v)*(alpha1+beta1+kcm(v)))/((kop(calcium(v),v)+kom(calcium(v),v))*(kcm(v)+alpha1)+(beta1*kcm(v)))
tslo1=((alpha1+beta1+kcm(v))/((kop(calcium(v),v)+kom(calcium(v),v))*(kcm(v)+alpha1)+(beta1*kcm(v))))
}
FUNCTION kcm(v (mV)){
kcm=wom*exp(-wyx*v)*(1/(1+((bkg/kyx)^nyx)))
}
FUNCTION kom(calcium(v),v (mV)){
kom=wom*exp(-wyx*v)*(1/(1+pow(calcium(v)/kyx,nyx)))
}
FUNCTION kop(calcium(v),v (mV)){
kop=wop*exp(-wxy*v)*(1/(1+pow(kxy/calcium(v),nxy)))
}
FUNCTION calcium(v (mV)){
calcium=(((fabs(gsc*(v-eca)*1e-3)/(8*pi*r*d*FARADAY))*exp(-r/sqrt(d/(kb*b))))*1e6*1e-3)+bkg
}
FUNCTION minfUNC2(v(mV)){
UNITSOFF
minfUNC2=1/(1+exp(-(v-va_unc2+stm2)/(ka_unc2*func2)))
UNITSON
}
FUNCTION hinfUNC2(v(mV)){
UNITSOFF
hinfUNC2= 1/(1+exp((v-vi_unc2+sth2)/(ki_unc2*f2unc2)))
UNITSON
}
FUNCTION tmUNC2(v(mV)){
UNITSOFF
tmUNC2=(p1tmunc2/(exp(-(v-p2tmunc2+shiftmunc2)/p3tmunc2)+exp((v-p2tmunc2+shiftmunc2)/p4tmunc2))+p5tmunc2)*constmunc2
UNITSON
}
FUNCTION thunc2(v(mV)){
UNITSOFF
thunc2=(p1thunc2/(1+exp((v-p2thunc2+shifthunc2)/(p3thunc2*fp5)))+p4thunc2/(1+exp(-(v-p5thunc2+shifthunc2)/(p6thunc2*fp5))))*consthunc2
UNITSON
}