-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathVD5_simulations.py
107 lines (72 loc) · 2.87 KB
/
VD5_simulations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# "Biophysical modeling of the whole-cell dynamics of C. elegans motor and interneurons families"
# M. Nicoletti et al. PloS ONE, 19(3): e0298105.
# https://doi.org/10.1371/journal.pone.0298105
# VD5 neuron H-H MODEL
# current and voltage clamp simulations shown in Figure 8 panels C,F, and I
import os
from neuron import h,gui
import numpy
from numpy import loadtxt
from matplotlib import pyplot
from VD5_simulation_iclamp import VD5_simulation_iclamp
from VD5_simulation_vclamp import VD5_simulation_vc
from g_to_Scm2 import gScm2
os.mkdir('VD5_SIMULATION')
path='VD5_SIMULATION'
v=numpy.linspace(start=-60, stop=70, num=14)
ic=numpy.linspace(start=-0.01,stop=0.01,num=9)
surf=351.53e-8
# conductances:slo1egl19,SLO2egl19,slo2iso,egl19,unc2,cca1,irk,SHK1kmix,nca,leak,eleak,c2,cm
g0=[1.7,1.7,0.9,0.1,0.7,1.2,0.09,0.2,-75,1,1]#finale
gstart=gScm2(g0,surf,7)
best_results=VD5_simulation_vc(gstart,-60,70,14)
best_current=numpy.array(list(best_results[0]))
best_iv=numpy.array(list(best_results[3]))
best_time=numpy.array(list(best_results[1]))
best_iv_peak=numpy.array(list(best_results[2]))
fname4="VD5_simulated_current_LEAK.txt"
fname5="VD5_simulated_timeVC_LEAK.txt"
fname6="VD5_simulated_IV_SS_LEAK.txt"
path4=os.path.join(path, fname4)
path5=os.path.join(path, fname5)
path6=os.path.join(path, fname6)
numpy.savetxt(path4, best_current, delimiter="," , fmt="%s")
numpy.savetxt(path5, best_time, delimiter=", " , fmt="%s")
numpy.savetxt(path6, best_iv, delimiter="," , fmt="%s")
best_cc=VD5_simulation_iclamp(gstart,-0.03,0.030,7)
best_voltage=best_cc[0]
best_time2=best_cc[1]
ind=numpy.where(numpy.logical_and(best_time2[0]>=50, best_time2[0]<=60))
ind_max=numpy.amax(ind)
ind_min=numpy.amin(ind)
rp=numpy.mean(best_voltage[:,ind_min:ind_max],axis=1)
print('resting potential')
print(rp)
fname8='VD5_simulated_VOLTAGE_LEAK.txt'
fname9='VD5_simulated_time_CC_LEAK.txt'
path8=os.path.join(path, fname8)
path9=os.path.join(path, fname9)
numpy.savetxt(path8, best_voltage, delimiter="," , fmt="%s")
numpy.savetxt(path9, best_time2, delimiter=", " , fmt="%s")
fig3=pyplot.figure(figsize=(8,4))
for i in range(0,14):
curr_plot=pyplot.plot(best_time[i],best_current[i],color='red',label='optimized')
pyplot.xlabel('Time [ms]')
pyplot.ylabel('I [pA]')
pyplot.title('Voltage Clamp')
pyplot.show()
fig4=pyplot.figure(figsize=(8,4))
for i in range(0,7):
volt_plot=pyplot.plot(best_time2[i],best_voltage[i],color='red',label='optimized')
pyplot.xlabel('Time [ms]')
pyplot.ylabel('V [mV]')
pyplot.title('Current Clamp')
pyplot.show()
fig=pyplot.figure(figsize=(8,4))
iv_plot=pyplot.plot(v,best_iv,color='red',marker='+',markersize=15,label='OPT-SS')
pyplot.xlabel('V [mV]')
pyplot.ylabel('I [pA]')
pyplot.xlim(-130,120)
fig.legend(loc=5)
pyplot.title('IV steady state')
pyplot.show()