-
Notifications
You must be signed in to change notification settings - Fork 2
/
AIY_simulation.py
102 lines (73 loc) · 2.89 KB
/
AIY_simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# "Biophysical modeling of the whole-cell dynamics of C. elegans motor and interneurons families"
# M. Nicoletti et al. PloS ONE, 19(3): e0298105.
# https://doi.org/10.1371/journal.pone.0298105
# AIY neuron H-H MODEL
# current and voltage clamp simulations shown in Figure 3
import os
from neuron import h,gui
import numpy
from matplotlib import pyplot
from AIY_simulation_iclamp import AIY_simulation_iclamp
from AIY_simulation_vclamp import AIY_simulation_vc
from g_to_Scm2 import gScm2
os.mkdir('AIY_SIMULATION')
path='AIY_SIMULATION'
v=numpy.linspace(start=-120, stop=50, num=18)
ic=numpy.linspace(start=-15, stop=35, num=11)
surf=65.89e-8# surface in cm^2 form neuromorpho AIYL
#conductances: leak, slo1iso,kqt1,egl19,slo1egl19,nca,irk,eleak,cm
g0=[0.14,1,0.2,0.1,0.92,0.06,0.5,-89.57,1.6]
gbest=gScm2(g0,surf,6)
best_results=AIY_simulation_vc(gbest,-120,50,18)
best_current=numpy.array(list(best_results[0]))
best_iv=numpy.array(list(best_results[3]))
best_time=numpy.array(list(best_results[1]))
best_iv_WT=numpy.array(list(best_results[2]))
fname4="AIY_simulated_current_WT.txt"
fname5="AIY_simulated_time_WT.txt"
fname6="AIY_simulated_IV_SS_WT.txt"
fname7="AIY_IV_simulated_PEAK_WT.txt"
path4=os.path.join(path, fname4)
path5=os.path.join(path, fname5)
path6=os.path.join(path, fname6)
path7=os.path.join(path, fname7)
numpy.savetxt(path4, best_current, delimiter="," , fmt="%s")
numpy.savetxt(path5, best_time, delimiter="," , fmt="%s")
numpy.savetxt(path6, best_iv, delimiter=", " , fmt="%s")
numpy.savetxt(path7, best_iv_WT, delimiter=", " , fmt="%s")
best_cc=AIY_simulation_iclamp(gbest,-0.015,0.035,11)
best_voltage=best_cc[0]
best_time2=best_cc[1]
best_VIss=best_cc[3]
best_VIpeaks=best_cc[2]
fname8='AIY_CC_simulated_voltage_WT.txt'
fname9='AIY_CC_simulated_time_WT.txt'
path8=os.path.join(path, fname8)
path9=os.path.join(path, fname9)
numpy.savetxt(path8, best_voltage, delimiter="," , fmt="%s")
numpy.savetxt(path9, best_time2, delimiter=", " , fmt="%s")
# plot
fig=pyplot.figure(figsize=(8,4))
iv_plot=pyplot.plot(v,best_iv,color='red',marker='+',markersize=15,label='optimized-ss')
iv_plot=pyplot.plot(v,best_iv_WT,color='red',marker='o',markersize=15,label='optimized-peaks')
pyplot.xlabel('V [mV]')
pyplot.ylabel('I [pA]')
pyplot.xlim(-130,60)
fig.legend(loc=5)
pyplot.title('IV-CURVES')
pyplot.show()
fig3=pyplot.figure(figsize=(8,4))
for i in range(0,18):
curr_plot=pyplot.plot(best_time[i],best_current[i],color='red',linestyle='solid')
pyplot.xlabel('Time [ms]')
pyplot.ylabel('I [pA]')
pyplot.title('Voltage clamp')
pyplot.show()
fig4=pyplot.figure(figsize=(8,4))
for i in range(0,10):
volt_plot=pyplot.plot(best_time2[i],best_voltage[i],color='red',linestyle='solid')
pyplot.xlabel('Time [ms]')
pyplot.ylabel('V [mV]')
#pyplot.xlim(0,0.7)
pyplot.title('Current_Clamp')
pyplot.show()