-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcellfullbest.hoc
112 lines (90 loc) · 2.73 KB
/
cellfullbest.hoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
/*
Defines cell geometry and biophysics based on the model cell
used for the "best fit" results shown in Fig. 7 of Fink et al. 2000
The biophysical parameters were extracted from paper and from the entry called
NE_Full_best_ in Virtual Cell's MathModel Database
(MathModel Database / math models / Shared Models / boris / NE_Full_best_).
There are two reasons why these simulation results cannot be exactly identical
to those shown in Fig. 7 of Fink et al. 2000.
1. The morphometric data for this NEURON implementation
were obtained by measurements taken from an idraw tracing of the cell image.
2. Because of differences between the approaches used by NEURON and
Virtual Cell to represent geometry and to deal with spatial discretization,
the distribution of spatially inhomogeneous variables in this NEURON
implementation is a qualitative approximation of the distribution
specified in NE_Full_best_
Finally, this implementation uses a "thermal" color map rather than the
"rainbow" color map used in the paper.
That said, the NEURON implementation reproduces the essential qualitative
features of the simulations presented in Fink et al. 2000,
and the quantitative differences between the time course of cai in soma
and neurite and the graphs shown in Fig. 7 under "Best Fit" are small.
*/
create soma[2], neurite, cone
access soma[0]
connect soma[1](0), soma[0](1)
connect neurite(0), soma[1](1)
connect cone(0), neurite(1)
SCALE = 164.4/67.6 // um/idraw distance units
soma[0] {
pt3dclear()
pt3dadd(0,0,0, 13.6*SCALE)
pt3dadd(13.6*SCALE,0,0, 13.6*SCALE)
}
soma[1] {
pt3dclear()
pt3dadd(0*SCALE, 0, 0, 5.6*SCALE)
pt3dadd(3.1*SCALE, 0, 0, 2.3*SCALE)
}
neurite {
pt3dclear()
pt3dadd(3.1*SCALE, 0, 0, 2.3*SCALE)
pt3dadd(42.6*SCALE, 0, 0, 1.1*SCALE)
pt3dadd(44.9*SCALE, 0, 0, 2.5*SCALE)
}
cone {
pt3dclear()
pt3dadd(44.9*SCALE, 0, 0, 2.5*SCALE)
pt3dadd(46.9*SCALE, 0, 0, 4.6*SCALE)
pt3dadd(48.8*SCALE, 0, 0, 3.6*SCALE)
pt3dadd(50.2*SCALE, 0, 0, 1.8*SCALE)
}
// finally the biophysical specification
forall insert ip3cum
forall insert cdp // includes SERCA
forall insert bkr
// densities as per Table 1
soma[0] {
nseg = 3
for (x,0) alpha_cdp(x) = 1.55
// 1 1.05 1.11 1.16 (soma[1])
beta_bkr(1/6) = 1.0
beta_bkr(1/2) = 1.1
beta_bkr(5/6) = 1.2
}
soma[1] {
alpha_cdp = (1.55+1)/2
beta_bkr = (1.2 + 2.46)/2
}
neurite {
nseg = 5
alpha_cdp(0.1) = 1.0
alpha_cdp(0.3) = 0.76
alpha_cdp(0.5) = 0.76
alpha_cdp(0.7) = 0.75
alpha_cdp(0.9) = 0.75
beta_bkr(0.1) = 2.46
beta_bkr(0.3) = 2.46
beta_bkr(0.5) = 1.8
beta_bkr(0.7) = 1.7
beta_bkr(0.9) = 1.6
}
cone {
alpha_cdp = 0.75
beta_bkr = 0.95
}
// discretization adjustments to reduce spatial error
soma[0] nseg*=3
soma[1] nseg*=3
neurite nseg*=5
cone nseg*=3