-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcdp.mod
311 lines (257 loc) · 8.34 KB
/
cdp.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
COMMENT
Calcium ion accumulation with radial and longitudinal diffusion, pump,
and SERCA.
Diffusion geometry based on Ca accumulation models from chapter 9
of The NEURON Book.
Mechanistic details of calcium pump and SERCA as described by Fink et al. 2000.
alpha = relative abundance of SERCA.
Current implementation assumes that ip3i is uniform across all compartments,
i.e. that radial diffusion of IP3 is very fast compared to the diffusion of
Ca and the mechanisms that drive Ca to change with time.
Indeed, simulations reveal this to be the case--IP3 concentration
remains nearly identical across section diameters.
There are slight differences in the soma during the fast rising phase
of the IP3 transient, but these resolve quickly.
Consequently, coupling between the shells of the ip3cum mechanism
and the SERCA channels in the shells of this mechanism
is a complexity that can be omitted--all shells of this mechanism
can use the concentration of IP3 in the outermost shell of the
ip3cum mechanism, and discoverable by any mechanism that has a
USEION ip3 READ ip3i VALENCE 1
statement in its NEURON block, and declares
ip3i (mM)
in its ASSIGNED block.
-------------
SERCA channel
-------------
jchnl = alpha * jmax * (1-(ca/caer)) * ( (ip3/(ip3+Kip3)) * (ca/(ca+Kact)) * h)^3
note: jchnl is release from SER to cytoplasm
jmax = 3500 uM/s
caer = 400 uM
Kip3 = 0.8 uM
Kact = 0.3 uM
h' = kon * (Kinh - (ca + Kinh)*h)
kon = 2.7 /uM-s
Kinh = 0.2 uM
Recasting h in terms of kinetic scheme--
From RHS of ODE for h'
hinf = Kinh/(ca+Kinh) = alpha/(alpha+beta)
tauh = 1/(kon*(ca+Kinh)) = 1/(alpha+beta)
So alpha = kon*Kinh and beta = kon*ca
----------
SERCA pump
----------
jpump = alpha * vmax*ca^2 / (ca^2 + Kp^2)
note: jpump is uptake from cytoplasm into SER
vmax = 3.75 uM/s
Kp = 0.27 uM
----------
SERCA leak
----------
jleak = alpha * L*(1 - (Ca/caer))
note: jleak is leak from SER to cytoplasm
L = 0.1 uM/s nominally,
but adjusted so that
jchnl + jpump + jleak = 0
when
ca = 0.05 uM and h = Kinh/(ca + Kinh)
ENDCOMMENT
NEURON {
SUFFIX cdp
USEION ca READ cao, cai, ica WRITE cai, ica
USEION ip3 READ ip3i VALENCE 1
RANGE ica_pmp
RANGE alpha : relative abundance of SERCA
GLOBAL vrat, TBufs, TBufm
: vrat must be GLOBAL--see INITIAL block
: however TBufs and TBufm may be RANGE
}
DEFINE Nannuli 4
UNITS {
(mol) = (1)
(molar) = (1/liter)
(uM) = (micromolar)
(mM) = (millimolar)
(um) = (micron)
(mA) = (milliamp)
FARADAY = (faraday) (10000 coulomb)
PI = (pi) (1)
}
PARAMETER {
cai0 = 50e-6 (mM)
DCa = 0.22 (um2/ms) : Fink et al. 2000
: Bufs--endogenous, stationary buffer
TBufs = 0.450 (mM) : total Bufs
: just make kfs fast, and calculate krs as kfs*KDs
kfs = 1000 (/mM-ms) : try these for now
KDs = 10 (uM)
: Bufm--fura2, for bradykinin experiments
TBufm = 0.075 (mM) : total Bufm
: just make kfm fast, and calculate krm as kfm*KDm
kfm = 1000 (/mM-ms) : try these for now
KDm = 0.24 (uM)
DBufm = 0.050 (um2/ms)
: Bufm--calcium green, for uncaging experiments
: TBufm = 0.075 (mM) : total Bufm
: just make kfm fast, and calculate krm as kfm*KDm
: kfm = 1000 (/mM-ms) : try these for now
: KDm = 0.26 (/ms)
: DBufm = 0.0184 (um2/ms)
: to eliminate ca pump, set gamma to 0 in hoc
cath = 0.2e-3 (mM) : threshold for ca pump activity
gamma = 8 (um/s) : ca pump flux density
: SERCA params
alpha = 1 (1) : relative abundance of SERCA mechanism as per Fig. 3
: SERCA pump
: jpump = alpha * vmax*ca^2 / (ca^2 + Kp^2)
: jpump is uptake from cytoplasm into SER
vmax = 3.75e-6 (mM/ms)
Kp = 0.27e-3 (mM)
: SERCA channel
: jchnl is release from SER to cytoplasm
jmax = 3.5e-3 (mM/ms)
caer = 0.400 (mM)
Kip3 = 0.8e-3 (mM)
Kact = 0.3e-3 (mM)
kon = 2.7 (/mM-ms)
Kinh = 0.2e-3 (mM)
: SERCA leak -- no fixed parameter other than caer
: does have an adjustable parameter L
}
ASSIGNED {
diam (um)
ica (mA/cm2)
ica_pmp (mA/cm2)
ica_pmp_last (mA/cm2)
parea (um) : pump area per unit length
sump (mM)
cai (mM)
cao (mM)
vrat[Nannuli] (1) : dimensionless
: numeric value of vrat[i] equals the volume
: of annulus i of a 1um diameter cylinder
: multiply by diam^2 to get volume per um length
bufs_0 (mM)
bufm_0 (mM)
ip3i (mM)
L[Nannuli] (mM/ms) : 0.1e-6 mM/ms nominally, but adjusted so that
: jchnl + jpump + jleak = 0 when ca = 0.05 uM and h = Kinh/(ca + Kinh)
}
CONSTANT { volo = 1e10 (um2) }
STATE {
: ca[0] is equivalent to cai
: ca[] are very small, so specify absolute tolerance
: let it be ~1.5 - 2 orders of magnitude smaller than baseline level
ca[Nannuli] (mM) <1e-7>
bufs[Nannuli] (mM) <1e-3>
cabufs[Nannuli] (mM) <1e-7>
bufm[Nannuli] (mM) <1e-4>
cabufm[Nannuli] (mM) <1e-8>
hc[Nannuli]
ho[Nannuli]
}
BREAKPOINT {
SOLVE state METHOD sparse
ica_pmp_last = ica_pmp
ica = ica_pmp
}
LOCAL factors_done, jx
INITIAL {
if (factors_done == 0) { : flag becomes 1 in the first segment
factors_done = 1 : all subsequent segments will have
factors() : vrat = 0 unless vrat is GLOBAL
}
cai = cai0
bufs_0 = KDs*TBufs/(KDs + (1000)*cai0)
bufm_0 = KDm*TBufm/(KDm + (1000)*cai0)
FROM i=0 TO Nannuli-1 {
ca[i] = cai
bufs[i] = bufs_0
cabufs[i] = TBufs - bufs_0
bufm[i] = bufm_0
cabufm[i] = TBufm - bufm_0
}
sump = cath
parea = PI*diam
: reconsider and revise initialization comments
ica=0
ica_pmp = 0
ica_pmp_last = 0
: If there is a voltage-gated calcium current,
: this is almost certainly the wrong initialization.
: In such a case, first do an initialization run, then use SaveState
: On subsequent runs, restore the initial condition from the saved states.
FROM i=0 TO Nannuli-1 {
ho[i] = Kinh/(ca[i]+Kinh)
hc[i] = 1-ho[i]
: jx = jp + jc
: choose L so that jl = -jx
: jl = L*(1 - (ca[i]/caer))
: jp = (-vmax*ca[i]^2 / (ca[i]^2 + Kp^2))
: jc = jmax*(1-(ca[i]/caer)) * ( (ip3i/(ip3i+Kip3)) * (ca[i]/(ca[i]+Kact)) * ho[i] )^3
jx = (-vmax*ca[i]^2 / (ca[i]^2 + Kp^2))
jx = jx + jmax*(1-(ca[i]/caer)) * ( (ip3i/(ip3i+Kip3)) * (ca[i]/(ca[i]+Kact)) * ho[i] )^3
L[i] = -jx/(1 - (ca[i]/caer))
}
}
LOCAL frat[Nannuli] : scales the rate constants for model geometry
PROCEDURE factors() {
LOCAL r, dr2
r = 1/2 : starts at edge (half diam)
dr2 = r/(Nannuli-1)/2 : full thickness of outermost annulus,
: half thickness of all other annuli
vrat[0] = 0
frat[0] = 2*r
FROM i=0 TO Nannuli-2 {
vrat[i] = vrat[i] + PI*(r-dr2/2)*2*dr2 : interior half
r = r - dr2
frat[i+1] = 2*PI*r/(2*dr2) : outer radius of annulus
: div by distance between centers
r = r - dr2
vrat[i+1] = PI*(r+dr2/2)*2*dr2 : outer half of annulus
}
}
LOCAL dsq, dsqvol : can't define local variable in KINETIC block
: or use in COMPARTMENT statement
KINETIC state {
COMPARTMENT i, diam*diam*vrat[i] {ca bufs cabufs bufm cabufm sump}
COMPARTMENT volo {cao}
LONGITUDINAL_DIFFUSION i, DCa*diam*diam*vrat[i] {ca}
LONGITUDINAL_DIFFUSION i, DBufm*diam*diam*vrat[i] {bufm cabufm}
: cell membrane ca pump
~ ca[0] <-> sump ((0.001)*parea*gamma*u(ca[0]/(1 (mM)), cath/(1 (mM))), (0.001)*parea*gamma*u(ca[0]/(1 (mM)), cath/(1 (mM))))
ica_pmp = 2*FARADAY*(f_flux - b_flux)/parea
: all currents except cell membrane ca pump
~ ca[0] << (-(ica - ica_pmp_last)*PI*diam/(2*FARADAY)) : ica is Ca efflux
: radial diffusion
FROM i=0 TO Nannuli-2 {
~ ca[i] <-> ca[i+1] (DCa*frat[i+1], DCa*frat[i+1])
~ bufm[i] <-> bufm[i+1] (DBufm*frat[i+1], DBufm*frat[i+1])
}
: buffering
dsq = diam*diam
FROM i=0 TO Nannuli-1 {
dsqvol = dsq*vrat[i]
~ ca[i] + bufs[i] <-> cabufs[i] (kfs*dsqvol, (0.001)*KDs*kfs*dsqvol)
~ ca[i] + bufm[i] <-> cabufm[i] (kfm*dsqvol, (0.001)*KDm*kfm*dsqvol)
}
: SERCA pump, channel, and leak
FROM i=0 TO Nannuli-1 {
dsqvol = dsq*vrat[i]
: pump
~ ca[i] << (-dsqvol*alpha*vmax*ca[i]^2 / (ca[i]^2 + Kp^2))
: channel
~ hc[i] <-> ho[i] (kon*Kinh, kon*ca[i])
~ ca[i] << ( dsqvol*alpha*jmax*(1-(ca[i]/caer)) * ( (ip3i/(ip3i+Kip3)) * (ca[i]/(ca[i]+Kact)) * ho[i] )^3 )
: leak
~ ca[i] << (dsqvol*alpha*L[i]*(1 - (ca[i]/caer)))
}
cai = ca[0]
}
FUNCTION u(x, th) {
if (x>th) {
u = 1
} else {
u = 0
}
}