|
| 1 | +import pytest |
| 2 | +import torch.nn as nn |
| 3 | + |
| 4 | +from modalities.models.gpt2.gpt2_model import ( |
| 5 | + GPT2LLM, |
| 6 | + ActivationType, |
| 7 | + AttentionConfig, |
| 8 | + AttentionImplementation, |
| 9 | + LayerNorms, |
| 10 | + LayerNormWrapperConfig, |
| 11 | + PositionTypes, |
| 12 | + QueryKeyValueTransformType, |
| 13 | +) |
| 14 | +from modalities.models.model_factory import ModelFactory |
| 15 | + |
| 16 | + |
| 17 | +def create_gpt2_configs(): |
| 18 | + attention_config = AttentionConfig( |
| 19 | + qkv_transforms=[ |
| 20 | + AttentionConfig.QueryKeyValueTransformConfig( |
| 21 | + type_hint=QueryKeyValueTransformType.RotaryTransform.name, |
| 22 | + config=AttentionConfig.QueryKeyValueTransformConfig.RotaryTransformConfig( |
| 23 | + n_embd=512, n_head=8, seq_length_dim=-2, base_freq=10000 |
| 24 | + ), |
| 25 | + ) |
| 26 | + ] |
| 27 | + ) |
| 28 | + norm_config = LayerNormWrapperConfig(norm_type=LayerNorms.layer_norm, config={"normalized_shape": 512}) |
| 29 | + return attention_config, norm_config |
| 30 | + |
| 31 | + |
| 32 | +@pytest.fixture |
| 33 | +def gpt2_model(): |
| 34 | + attention_config, norm_config = create_gpt2_configs() |
| 35 | + model = GPT2LLM( |
| 36 | + sample_key="input_ids", |
| 37 | + prediction_key="logits", |
| 38 | + poe_type=PositionTypes.NOPE, |
| 39 | + sequence_length=256, |
| 40 | + vocab_size=1024, |
| 41 | + n_layer=4, |
| 42 | + n_head_q=8, |
| 43 | + n_head_kv=4, |
| 44 | + n_embd=512, |
| 45 | + ffn_hidden=2048, |
| 46 | + dropout=0.1, |
| 47 | + bias=True, |
| 48 | + activation_type=ActivationType.SWIGLU, |
| 49 | + attention_implementation=AttentionImplementation.PYTORCH_FLASH, |
| 50 | + attention_config=attention_config, |
| 51 | + attention_norm_config=norm_config, |
| 52 | + ffn_norm_config=norm_config, |
| 53 | + lm_head_norm_config=norm_config, |
| 54 | + use_weight_tying=True, |
| 55 | + ) |
| 56 | + return model |
| 57 | + |
| 58 | + |
| 59 | +def test_get_compiled_model_compiles_blocks(gpt2_model): |
| 60 | + original_blocks = list(gpt2_model.transformer.h) |
| 61 | + original_wte = gpt2_model.transformer.wte |
| 62 | + original_lm_head = gpt2_model.transformer.lm_head |
| 63 | + |
| 64 | + block_names = ["GPT2Block"] |
| 65 | + result_model = ModelFactory.get_compiled_model(gpt2_model, block_names) |
| 66 | + |
| 67 | + assert len(result_model.transformer.h) == 4, "Should still have four blocks" |
| 68 | + for i, (original_block, new_block) in enumerate(zip(original_blocks, result_model.transformer.h)): |
| 69 | + assert new_block is not original_block, f"Block {i} should be a compiled version" |
| 70 | + assert isinstance(new_block, nn.Module), f"Block {i} should be an nn.Module" |
| 71 | + assert result_model.transformer.wte is original_wte, "Embedding layer should remain unchanged" |
| 72 | + assert result_model.transformer.lm_head is original_lm_head, "LM head should remain unchanged" |
| 73 | + assert result_model is gpt2_model, "Should return the same model instance" |
| 74 | + |
| 75 | + |
| 76 | +def test_get_compiled_model_no_matching_blocks(gpt2_model): |
| 77 | + """ |
| 78 | + Test that get_compiled_model raises a ValueError if no blocks match the specified types. |
| 79 | + """ |
| 80 | + with pytest.raises(ValueError, match="None of the provided block_names match any modules in the model"): |
| 81 | + ModelFactory.get_compiled_model(gpt2_model, block_names=["Conv2d"]) |
| 82 | + |
| 83 | + |
| 84 | +def test_get_compiled_model_empty_block_names(gpt2_model): |
| 85 | + original_model_dict = dict(gpt2_model.named_modules()) |
| 86 | + result_model = ModelFactory.get_compiled_model(gpt2_model, block_names=[]) |
| 87 | + |
| 88 | + new_model_dict = dict(result_model.named_modules()) |
| 89 | + assert new_model_dict == original_model_dict, "Model should remain unchanged with empty block_names" |
| 90 | + assert result_model is gpt2_model, "Should return the same model instance" |
0 commit comments