-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
39 lines (28 loc) · 1.02 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
import torch.nn as nn
import torch.nn.functional as F
class Cifar10Model(nn.Module):
def __init__(self):
super(Cifar10Model, self).__init__()
self.conv11 = nn.Conv2d(3, 32, 3, padding=1)
self.conv12 = nn.Conv2d(32, 32, 3, padding=1)
self.conv21 = nn.Conv2d(32, 64, 3, padding=1)
self.conv22 = nn.Conv2d(64, 64, 3, padding=1)
self.fc1 = nn.Linear(64 * 8 * 8, 512)
self.fc2 = nn.Linear(512, num_classes)
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.25)
self.dropout3 = nn.Dropout2d(0.5)
def forward(self, x):
x = F.relu(self.conv11(x))
x = F.relu(self.conv12(x))
x = F.max_pool2d(x, (2, 2))
x = self.dropout1(x)
x = F.relu(self.conv21(x))
x = F.relu(self.conv22(x))
x = F.max_pool2d(x, (2, 2))
x = self.dropout2(x)
x = x.view(-1, 64 * 8 * 8)
x = F.relu(self.fc1(x))
x = self.dropout3(x)
return self.fc2(x)