-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
195 lines (138 loc) · 5.35 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
import numpy as np
import tensorflow as tf
import torch.utils.data as data
import cnn
import dataset
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#print("device", device)
torch.manual_seed(1)
batch_size = 100
num_classes = 10
epochs = 900
global_step = 0
lr_list = [1e-3,5e-4,1e-4,5e-5,1e-5,5e-6,1e-6,5e-7,1e-7,5e-8]
N = len(lr_list)
eta = np.sqrt(8*np.log(N)/epochs)
beta = np.exp(-eta)
w = np.array([1/N for i in range(N)])
#w_map = np.array([1/N for i in range(N)])
#Loss_Matrix = np.zeros(N)
LoadModelName0 = 'weight.pth'
def WAA(loss_list,w):
selected = np.random.choice(len(loss_list), p=w)
w_Mom = sum(w*pow(beta,loss_list))
for i in range(N):
w_Child = w[i]*pow(beta,loss_list[i])
w[i] = w_Child/w_Mom
return selected,w
def cal_Regret(Loss_Matrix,P_loss_list):
Record = np.sum(Loss_Matrix,axis = 0)
Best_Ex_indent = np.argmin(Record)
Best_Ex_loss = []
b = 0
for i in Loss_Matrix[1:,Best_Ex_indent]:
b = b + i
Best_Ex_loss.append(b)
Regret = np.array(P_loss_list) - np.array(Best_Ex_loss)
return Regret
def train(epoch,LR,i):
model.train()
optimizer = optim.Adam(model.parameters(), lr=LR)
print("\n--- Epoch : %2d _%2d ---" % (epoch,i+1))
if epoch < 300:
dataloader_train = dataloader_train1
steps = len(ds_train1)//batch_size
elif 300 <= epoch < 600:
dataloader_train = dataloader_train2
steps = len(ds_train2)//batch_size
else:
dataloader_train = dataloader_train3
steps = len(ds_train3)//batch_size
for step, (images, labels) in enumerate(dataloader_train, 1):
global global_step
global_step += 1
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if step % 100 == 0:
print ('Epoch [%d/%d], Step [%d/%d], Loss: %.4f' % (epoch, epochs, step, steps, loss.item()))
def test(epoch,i):
model.eval()
correct = 0
total = 0
with torch.no_grad():
if epoch < 300:
dataloader_test = dataloader_test1
elif 300 <= epoch < 600:
dataloader_test = dataloader_test2
else:
dataloader_test = dataloader_test3
for (images, labels) in dataloader_test:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
correct += (predicted == labels).sum().item()
total += labels.size(0)
print("Test Acc : %.4f" % (correct/total))
print("Test Err : %.4f" % (1-correct/total))
return 1-correct/total,correct/total
model = cnn.Cifar10Model().to(device)
criterion = nn.CrossEntropyLoss()
#senario1:10-5-2, senario2:2-5-10, senaio3:5-5-5, senario:5-5-10
senario = "4"
if senario == "1":
ds_train1,ds_train2,ds_train3 = dataset.changingtraindata1(batch_size)
ds_test1,ds_test2,ds_test3 = dataset.changingtestdata1(batch_size)
elif senario == "2":
ds_train1,ds_train2,ds_train3 = dataset.changingtraindata2(batch_size)
ds_test1,ds_test2,ds_test3 = dataset.changingtestdata2(batch_size)
elif senario == "3":
ds_train1,ds_train2,ds_train3 = dataset.changingtraindata3(batch_size)
ds_test1,ds_test2,ds_test3 = dataset.changingtestdata3(batch_size)
elif senario == "4":
ds_train1,ds_train2,ds_train3 = dataset.changingtraindata4(batch_size)
ds_test1,ds_test2,ds_test3 = dataset.changingtestdata4(batch_size)
dataloader_train1 = data.DataLoader(dataset=ds_train1, batch_size=batch_size, shuffle=True)
dataloader_train2 = data.DataLoader(dataset=ds_train2, batch_size=batch_size, shuffle=True)
dataloader_train3 = data.DataLoader(dataset=ds_train3, batch_size=batch_size, shuffle=True)
dataloader_test1 = data.DataLoader(dataset=ds_test1, batch_size=batch_size, shuffle=False)
dataloader_test2 = data.DataLoader(dataset=ds_test2, batch_size=batch_size, shuffle=False)
dataloader_test3 = data.DataLoader(dataset=ds_test3, batch_size=batch_size, shuffle=False)
P_acc_list = []
for epoch in range(1, epochs+1):
loss_list = []
acc_list = []
for i,LR in enumerate(lr_list):
if epoch!=1:
LoadModelName = 'weight'+str(selected)+'.pth'
param = torch.load(LoadModelName)
model.load_state_dict(param)
else:
param0 = torch.load(LoadModelName0)
model.load_state_dict(param0)
train(epoch,LR,i)
SaveModelName = 'weight'+str(i)+'.pth'
torch.save(model.state_dict(), SaveModelName)
l,a = test(epoch,i)
acc_list.append(a)
loss_list.append(l)
selected,w = WAA(loss_list,w)
print(selected)
P_acc_list.append(acc_list[selected])
#==change in weight==
#w_map = np.vstack((w_map,w))
#=======
#===calculate regret====
#Loss_Matrix = np.vstack((Loss_Matrix,loss_list))
#P_loss = P_loss + loss_list[selected]
#P_loss_list.append(P_loss)
#Regret = cal_Regret(Loss_Matrix,P_loss_list)
#======================