-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
34 lines (28 loc) · 1008 Bytes
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5)
self.pool1 = nn.MaxPool2d(kernel_size=2)
self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=3)
self.pool2 = nn.MaxPool2d(kernel_size=2)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 60)
self.fc3 = nn.Linear(60, 10)
def forward(self, x, labels=None):
x = F.relu(self.conv1(x))
x = self.pool1(x)
x = F.relu(self.conv2(x))
x = self.pool2(x)
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = (x,)
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(x[0], labels)
x = (loss,) + x
return x