-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanimation.py
49 lines (43 loc) · 1.54 KB
/
animation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
import torch.nn as nn
import numpy as np
from utils import get_training_imgs
import imageio
def animation(Gs, sigmas, animation_z, imgs, scale=4/3, device="cuda:0"):
img = imgs[0]
h, w = img.shape[0], img.shape[1]
for i in range(len(Gs)):
G = Gs[i]
sigma = sigmas[i]
if i < 1:
z = animation_z
prev = torch.zeros_like(animation_z).to(device)
else:
z = torch.randn(1, 3, h, w).to(device) * sigma
prev = G(z, prev)
if i == len(Gs) - 1:
break
h, w = int(h * scale), int(w * scale)
upsample = nn.Upsample((h, w))
prev = upsample(prev)
return prev
if __name__ == "__main__":
img_path = "./star.jpg"
model_path = "./star.pth"
num_frame = 10
device = "cuda:0" if torch.cuda.is_available() else "cpu"
imgs = get_training_imgs(img_path)
checkpoint = torch.load(model_path)
sigmas = checkpoint["sigmas"]
Gs = checkpoint["Gs"]
img = imgs[0]
h, w = img.shape[0], img.shape[1]
z0 = torch.randn(1, 3, h, w).to(device)
z1 = torch.randn(1, 3, h, w).to(device)
frames = []
for k in range(num_frame):
animation_z = z0 + (z1 - z0) * k / num_frame
frame = animation(Gs, sigmas, animation_z, imgs, scale=4 / 3, device=device).cpu().detach().numpy()[0]
gen = np.transpose(frame, axes=[1, 2, 0])
frames.append(np.uint8((gen + 1) * 127.5))
imageio.mimsave(img_path[:-4]+".gif", frames, 'GIF', duration=0.3)