-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFaceEyDetection.py
37 lines (25 loc) · 1.1 KB
/
FaceEyDetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import numpy as np
import cv2
cap = cv2.VideoCapture(0)
# Load Haar cascades for face and eye detection
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')
while True:
ret, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
# Iterate through detected faces
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 3)
# Define the region of interest (ROI) for eye detection within the face
roi_gray = gray[y:y+w, x:x+w]
roi_color = frame[y:y+h, x:x+w]
# Detect eyes within the ROI
eyes = eye_cascade.detectMultiScale(roi_gray, scaleFactor=1.1, minNeighbors=4, minSize=(30, 30))
for (ex, ey, ew, eh) in eyes:
cv2.rectangle(roi_color, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2)
cv2.imshow('frame', frame)
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()