Skip to content

Latest commit

 

History

History

lsm6dsl

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

LSM6DSL Click

LSM6DSL Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.


Click Library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : SPI type

Software Support

Example Description

This app measures linear and angular velocity with six degrees of freedom.

Example Libraries

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Lsm6Dsl

Example Key Functions

  • lsm6dsl_cfg_setup Config Object Initialization function.
void lsm6dsl_cfg_setup ( lsm6dsl_cfg_t *cfg );
  • lsm6dsl_init Initialization function.
err_t lsm6dsl_init ( lsm6dsl_t *ctx, lsm6dsl_cfg_t *cfg );
  • lsm6dsl_default_cfg Click Default Configuration function.
void lsm6dsl_default_cfg ( lsm6dsl_t *ctx );
  • lsm6dsl_set_accel_config This function set accel configuration to the target LSM6DSL_CTRL1_XL register of LSM6DSL sensor.
void lsm6dsl_set_accel_config ( lsm6dsl_t *ctx, uint8_t odr_sel, uint8_t full_scale );
  • lsm6dsl_set_gyro_config This function set gyro configuration to the target LSM6DSL_CTRL1_XL register of LSM6DSL sensor.
void lsm6dsl_set_gyro_config ( lsm6dsl_t *ctx, uint8_t odr_sel, uint8_t full_scale );
  • lsm6dsl_get_axis This function get axis value from the two target 8-bit register address of LSM6DSL sensor.
uint16_t lsm6dsl_get_axis ( lsm6dsl_t *ctx, uint8_t reg_address_low );

Application Init

Initialization driver.

void application_init ( void )
{
    log_cfg_t log_cfg;
    lsm6dsl_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----\r\n" );

    //  Click initialization.

    lsm6dsl_cfg_setup( &cfg );
    LSM6DSL_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    lsm6dsl_init( &lsm6dsl, &cfg );

    lsm6dsl_default_cfg( &lsm6dsl );

    log_printf( &logger, "---------------------------------------\r\n" );
    log_printf( &logger, "|            LSM6DSL Click            |\r\n" );
    log_printf( &logger, "---------------------------------------\r\n" );
    log_printf( &logger, "|     Accel       |       Gyro        |\r\n" );
    log_printf( &logger, "---------------------------------------\r\n" );

    Delay_ms ( 100 );
}

Application Task

This is a example which demonstrates the use of LSM6DSL Click board. LSM6DSL Click communicates with register via SPI by write to register and read from register, measured acceleration and gyroscope coordinates values ( X,Y,Z ) Result are being sent to the uart where you can track their changes. All data logs on usb uart for aproximetly every 3 sec.

void application_task ( void )
{

    lsm6dsl_get_accel( &lsm6dsl, &accel, LSM6DSL_FULLSCALE_XL_2 );
    
    Delay_ms ( 10 );
    
    lsm6dsl_get_gyro( &lsm6dsl, &gyro, LSM6DSL_FULLSCALE_G_245 );
    
    Delay_ms ( 10 );

    log_printf( &logger, " Accel X : %f |  Gyro X : %f |\r\n", accel.accel_x, gyro.gyro_x );

    log_printf( &logger, " Accel Y : %f |  Gyro Y : %f |\r\n", accel.accel_y, gyro.gyro_y );

    log_printf( &logger, " Accel Z : %f |  Gyro Z : %f |\r\n", accel.accel_z, gyro.gyro_z );

    log_printf( &logger, "---------------------------------------\r\n" );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
  • UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.

Additional Notes and Information

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.