EZO Carrier pH Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.
- Author : Stefan Ilic
- Date : Oct 2023.
- Type : UART type
This example demonstrates the use of EZO Carrier pH Click board by processing the incoming data and displaying them on the USB UART.
- MikroSDK.Board
- MikroSDK.Log
- Click.EZOCarrierpH
ezocarrierph_cfg_setup
Config Object Initialization function.
void ezocarrierph_cfg_setup ( ezocarrierph_cfg_t *cfg );
ezocarrierph_init
Initialization function.
err_t ezocarrierph_init ( ezocarrierph_t *ctx, ezocarrierph_cfg_t *cfg );
ezocarrierph_send_cmd
Send command function.
void ezocarrierph_send_cmd ( ezocarrierph_t *ctx, uint8_t *cmd );
ezocarrierph_send_cmd_with_par
Send command function with parameter.
void ezocarrierph_send_cmd_with_par ( ezocarrierph_t *ctx, uint8_t *cmd, uint8_t *param_buf );
ezocarrierph_send_cmd_check
Check the sent command.
void ezocarrierph_send_cmd_check ( ezocarrierph_t *ctx, uint8_t *cmd );
Initializes the driver, performs the Click default factory reset, and mid point calibration.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
ezocarrierph_cfg_t ezocarrierph_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
ezocarrierph_cfg_setup( &ezocarrierph_cfg );
EZOCARRIERPH_MAP_MIKROBUS( ezocarrierph_cfg, MIKROBUS_1 );
if ( UART_ERROR == ezocarrierph_init( &ezocarrierph, &ezocarrierph_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
log_printf( &logger, "Device status \r\n" );
ezocarrierph_send_cmd( &ezocarrierph, EZOCARRIERPH_CMD_STATUS );
error_flag = ezocarrierph_rsp_check( &ezocarrierph, EZOCARRIERPH_RSP_OK );
ezocarrierph_error_check( error_flag );
log_printf( &logger, "Factory reset \r\n" );
ezocarrierph_send_cmd( &ezocarrierph, EZOCARRIERPH_CMD_FACTORY );
error_flag = ezocarrierph_rsp_check( &ezocarrierph, EZOCARRIERPH_RSP_READY );
ezocarrierph_error_check( error_flag );
log_printf( &logger, "Device info \r\n" );
ezocarrierph_send_cmd( &ezocarrierph, EZOCARRIERPH_CMD_DEV_INFO );
error_flag = ezocarrierph_rsp_check( &ezocarrierph, EZOCARRIERPH_RSP_OK );
ezocarrierph_error_check( error_flag );
uint8_t n_cnt = 0;
uint8_t last_reading[ APP_BUFFER_SIZE ] = { 0 };
ezocarrierph_clear_app_buf( );
ezocarrierph_send_cmd( &ezocarrierph, EZOCARRIERPH_CMD_SINGLE_READ );
ezocarrierph_process ( &ezocarrierph );
strcpy( last_reading, app_buf );
log_printf( &logger, "Mid point calibration \r\n" );
log_printf( &logger, "- - - - - - - - - - - - - - -\r\n" );
log_printf( &logger, "Place probe into pH neutral solution \r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "Starting calibration \r\n" );
log_printf( &logger, "- - - - - - - - - - - - - - -\r\n" );
log_printf( &logger, "Waiting for stable readings \r\n" );
while ( n_cnt <= 5 )
{
if ( EZOCARRIERPH_OK == ezocarrierph_process ( &ezocarrierph ) )
{
if ( 0 == strstr( app_buf, last_reading ) )
{
n_cnt++;
}
else
{
strcpy( last_reading, app_buf );
n_cnt = 0;
}
}
log_printf( &logger, "- " );
Delay_ms ( 1000 );
ezocarrierph_clear_app_buf( );
}
#define MID_POINT_CALIB "mid,7.00"
log_printf( &logger, "\r\n Calibration \r\n" );
ezocarrierph_send_cmd_with_par( &ezocarrierph, EZOCARRIERPH_CMD_CAL, MID_POINT_CALIB );
error_flag = ezocarrierph_rsp_check( &ezocarrierph, EZOCARRIERPH_RSP_OK );
ezocarrierph_error_check( error_flag );
#define DISABLE_CONT_READ "0"
log_printf( &logger, "Disable continuous reading mode \r\n" );
ezocarrierph_send_cmd_with_par( &ezocarrierph, EZOCARRIERPH_CMD_CONT_READ, DISABLE_CONT_READ );
error_flag = ezocarrierph_rsp_check( &ezocarrierph, EZOCARRIERPH_RSP_OK );
ezocarrierph_error_check( error_flag );
log_info( &logger, " Application Task " );
}
Reads and processes all incoming pH value data and displays them on the USB UART.
void application_task ( void )
{
log_printf( &logger, "Reading... \r\n" );
ezocarrierph_send_cmd( &ezocarrierph, EZOCARRIERPH_CMD_SINGLE_READ );
error_flag = ezocarrierph_rsp_check( &ezocarrierph, EZOCARRIERPH_RSP_OK );
ezocarrierph_error_check( error_flag );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
This Click board can be interfaced and monitored in two ways:
- Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
- UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.