Brushless 20 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.
- Author : Stefan Filipovic
- Date : Jul 2022.
- Type : I2C type
This example demonstrates the use of the Brushless 20 Click board by driving the motor in both directions at different speeds.
- MikroSDK.Board
- MikroSDK.Log
- Click.Brushless20
brushless20_cfg_setup
Config Object Initialization function.
void brushless20_cfg_setup ( brushless20_cfg_t *cfg );
brushless20_init
Initialization function.
err_t brushless20_init ( brushless20_t *ctx, brushless20_cfg_t *cfg );
brushless20_default_cfg
Click Default Configuration function.
err_t brushless20_default_cfg ( brushless20_t *ctx );
brushless20_perform_com_sequence
This function performs a single commutation sequence for the selected rotation direction at a desired speed.
err_t brushless20_perform_com_sequence ( brushless20_t *ctx, uint8_t dir, uint8_t speed );
brushless20_drive_motor
This function drives the motor for a desired time by performing multiple commutation sequences for the selected rotation direction at a desired speed.
err_t brushless20_drive_motor ( brushless20_t *ctx, uint8_t dir, uint8_t speed, uint32_t time_ms );
brushless20_get_fault_pin
This function returns the fault pin logic state.
err_t brushless20_get_fault_pin ( brushless20_t *ctx );
Initializes the driver and performs the Click default configuration.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
brushless20_cfg_t brushless20_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
brushless20_cfg_setup( &brushless20_cfg );
BRUSHLESS20_MAP_MIKROBUS( brushless20_cfg, MIKROBUS_1 );
if ( I2C_MASTER_ERROR == brushless20_init( &brushless20, &brushless20_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( BRUSHLESS20_ERROR == brushless20_default_cfg ( &brushless20 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
Drives the motor in both directions and changes the motor speed every 3 seconds approximately. The current driving direction and speed will be displayed on the USB UART.
void application_task ( void )
{
log_printf ( &logger, "\r\n Driving motor clockwise \r\n" );
for ( uint8_t speed = BRUSHLESS20_SPEED_MIN; speed <= BRUSHLESS20_SPEED_MAX; speed += 20 )
{
log_printf ( &logger, " Speed: %u\r\n", ( uint16_t ) speed );
if ( BRUSHLESS20_OK != brushless20_drive_motor ( &brushless20, BRUSHLESS20_DIR_CW, speed, 3000 ) )
{
log_error ( &logger, " Drive motor " );
}
}
Delay_ms ( 1000 );
log_printf ( &logger, "\r\n Driving motor counter-clockwise \r\n" );
for ( uint8_t speed = BRUSHLESS20_SPEED_MIN; speed <= BRUSHLESS20_SPEED_MAX; speed += 20 )
{
log_printf ( &logger, " Speed: %u\r\n", ( uint16_t ) speed );
if ( BRUSHLESS20_OK != brushless20_drive_motor ( &brushless20, BRUSHLESS20_DIR_CCW, speed, 3000 ) )
{
log_error ( &logger, " Drive motor " );
}
}
Delay_ms ( 1000 );
}
This Click board can be interfaced and monitored in two ways:
- Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
- UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.