Skip to content

Latest commit

 

History

History

brushless20

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Brushless 20 Click

Brushless 20 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.


Click Library

  • Author : Stefan Filipovic
  • Date : Jul 2022.
  • Type : I2C type

Software Support

Example Description

This example demonstrates the use of the Brushless 20 Click board by driving the motor in both directions at different speeds.

Example Libraries

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless20

Example Key Functions

  • brushless20_cfg_setup Config Object Initialization function.
void brushless20_cfg_setup ( brushless20_cfg_t *cfg );
  • brushless20_init Initialization function.
err_t brushless20_init ( brushless20_t *ctx, brushless20_cfg_t *cfg );
  • brushless20_default_cfg Click Default Configuration function.
err_t brushless20_default_cfg ( brushless20_t *ctx );
  • brushless20_perform_com_sequence This function performs a single commutation sequence for the selected rotation direction at a desired speed.
err_t brushless20_perform_com_sequence ( brushless20_t *ctx, uint8_t dir, uint8_t speed );
  • brushless20_drive_motor This function drives the motor for a desired time by performing multiple commutation sequences for the selected rotation direction at a desired speed.
err_t brushless20_drive_motor ( brushless20_t *ctx, uint8_t dir, uint8_t speed, uint32_t time_ms );
  • brushless20_get_fault_pin This function returns the fault pin logic state.
err_t brushless20_get_fault_pin ( brushless20_t *ctx );

Application Init

Initializes the driver and performs the Click default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    brushless20_cfg_t brushless20_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    brushless20_cfg_setup( &brushless20_cfg );
    BRUSHLESS20_MAP_MIKROBUS( brushless20_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == brushless20_init( &brushless20, &brushless20_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( BRUSHLESS20_ERROR == brushless20_default_cfg ( &brushless20 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor in both directions and changes the motor speed every 3 seconds approximately. The current driving direction and speed will be displayed on the USB UART.

void application_task ( void )
{
    log_printf ( &logger, "\r\n Driving motor clockwise \r\n" );
    for ( uint8_t speed = BRUSHLESS20_SPEED_MIN; speed <= BRUSHLESS20_SPEED_MAX; speed += 20 )
    {
        log_printf ( &logger, " Speed: %u\r\n", ( uint16_t ) speed );
        if ( BRUSHLESS20_OK != brushless20_drive_motor ( &brushless20, BRUSHLESS20_DIR_CW, speed, 3000 ) )
        {
            log_error ( &logger, " Drive motor " );
        }
    }
    Delay_ms ( 1000 );
    log_printf ( &logger, "\r\n Driving motor counter-clockwise \r\n" );
    for ( uint8_t speed = BRUSHLESS20_SPEED_MIN; speed <= BRUSHLESS20_SPEED_MAX; speed += 20 )
    {
        log_printf ( &logger, " Speed: %u\r\n", ( uint16_t ) speed );
        if ( BRUSHLESS20_OK != brushless20_drive_motor ( &brushless20, BRUSHLESS20_DIR_CCW, speed, 3000 ) )
        {
            log_error ( &logger, " Drive motor " );
        }
    }
    Delay_ms ( 1000 );
}

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
  • UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.

Additional Notes and Information

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.