1x4 RGB Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.
- Author : Nenad Filipovic
- Date : Feb 2024.
- Type : I2C type
This example demonstrates the use of the 1x4 RGB Click board by controlling the color of the LEDs [LD1-LD4].
- MikroSDK.Board
- MikroSDK.Log
- Click.1x4RGB
c1x4rgb_cfg_setup
Config Object Initialization function.
void c1x4rgb_cfg_setup ( c1x4rgb_cfg_t *cfg );
c1x4rgb_init
Initialization function.
err_t c1x4rgb_init ( c1x4rgb_t *ctx, c1x4rgb_cfg_t *cfg );
c1x4rgb_default_cfg
Click Default Configuration function.
err_t c1x4rgb_default_cfg ( c1x4rgb_t *ctx );
c1x4rgb_set_rgb_color
This function sets the desired values of RGB colors for the selected LED by using the I2C serial interface.
err_t c1x4rgb_set_rgb_color ( c1x4rgb_t *ctx, uint8_t led_pos, uint8_t red, uint8_t green, uint8_t blue );
c1x4rgb_enable_leds
This function turns on the desired LEDs by using the I2C serial interface.
err_t c1x4rgb_enable_leds ( c1x4rgb_t *ctx, uint16_t led_bitmask );
c1x4rgb_set_tmc_mode
This function configures the desired LED drive mode as TCM 1/2/3/4 scans using the I2C serial interface.
err_t c1x4rgb_set_tmc_mode ( c1x4rgb_t *ctx, uint8_t dev_cfg, uint8_t mode );
Initialization of I2C module and log UART. After driver initialization, the app executes a default configuration.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
c1x4rgb_cfg_t c1x4rgb_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
c1x4rgb_cfg_setup( &c1x4rgb_cfg );
C1X4RGB_MAP_MIKROBUS( c1x4rgb_cfg, MIKROBUS_1 );
if ( I2C_MASTER_ERROR == c1x4rgb_init( &c1x4rgb, &c1x4rgb_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( C1X4RGB_ERROR == c1x4rgb_default_cfg ( &c1x4rgb ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
Delay_ms ( 1000 );
}
The demo example shows the color change of four RGB LEDs, starting with red color, through green and blue, and ending with white. These LEDs actually consist of three single-colored LEDs (Red-Green-Blue) in a single package. Various colors can be reproduced by mixing the intensity of each LED.
void application_task ( void )
{
log_printf( &logger, "\r\n\n RED: " );
for ( uint8_t led_pos = C1X4RGB_LED_POS_LD1; led_pos <= C1X4RGB_LED_POS_LD4; led_pos++ )
{
if ( C1X4RGB_OK == c1x4rgb_set_rgb_color( &c1x4rgb, led_pos, DEMO_COLOR_INT_100,
DEMO_COLOR_INT_0,
DEMO_COLOR_INT_0 ) )
{
log_printf( &logger, " LD%d ", ( uint16_t ) led_pos );
Delay_ms ( 100 );
}
}
log_printf( &logger, "\r\n GREEN: " );
for ( uint8_t led_pos = C1X4RGB_LED_POS_LD1; led_pos <= C1X4RGB_LED_POS_LD4; led_pos++ )
{
if ( C1X4RGB_OK == c1x4rgb_set_rgb_color( &c1x4rgb, led_pos, DEMO_COLOR_INT_0,
DEMO_COLOR_INT_100,
DEMO_COLOR_INT_0 ) )
{
log_printf( &logger, " LD%d ", ( uint16_t ) led_pos );
Delay_ms ( 100 );
}
}
log_printf( &logger, "\r\n BLUE: " );
for ( uint8_t led_pos = C1X4RGB_LED_POS_LD1; led_pos <= C1X4RGB_LED_POS_LD4; led_pos++ )
{
if ( C1X4RGB_OK == c1x4rgb_set_rgb_color( &c1x4rgb, led_pos, DEMO_COLOR_INT_0,
DEMO_COLOR_INT_0,
DEMO_COLOR_INT_100 ) )
{
log_printf( &logger, " LD%d ", ( uint16_t ) led_pos );
Delay_ms ( 100 );
}
}
log_printf( &logger, "\r\n WHITE:" );
for ( uint8_t led_pos = C1X4RGB_LED_POS_LD1; led_pos <= C1X4RGB_LED_POS_LD4; led_pos++ )
{
if ( C1X4RGB_OK == c1x4rgb_set_rgb_color( &c1x4rgb, led_pos, DEMO_COLOR_INT_100,
DEMO_COLOR_INT_100,
DEMO_COLOR_INT_100 ) )
{
log_printf( &logger, " LD%d ", ( uint16_t ) led_pos );
Delay_ms ( 100 );
}
}
}
This Click board can be interfaced and monitored in two ways:
- Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
- UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.