-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtests.py
167 lines (120 loc) · 3.73 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import matplotlib.pyplot as plt
# This is a sample Python script.
# Press Shift+F10 to execute it or replace it with your code.
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
def time_to_reach_distance_num(h, v, a):
if v < 0:
return -1
time = 0
timestamp = 0.2
while h >= 0 and v >= 0:
v += a * timestamp
h -= v * timestamp
time += timestamp
return time
def distance_to_reach_velocity(h, v, a):
time = 0
timestamp = 0.2
while h >= 0 and v >= 0:
v += a * timestamp
h -= v * timestamp
time += timestamp
return time
def time_to_reach_with_thrust(h, v):
time_stamp = 0.2
if v < 0:
return 0
v = v + g
print("\tFsum:", Fsum)
time = -1
while v > 0:
v += Fsum * time_stamp
h -= v * time_stamp
if h <= 0:
return -1
time += time_stamp
return time
def F(velocity, distance):
# Required to be thrust to land safely
if distance <= 0:
return 0 # If distance is 0 or negative, no thrust is needed (already landed)
else:
required_thrust = Ms * (velocity ** 2) / (2 * distance)
return required_thrust # Limit thrust to maximum 1500 Newtons
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
G = 6.67 * pow(10, -11) # stała grawitacyjna
# timestamp = 5 # czas miedzy pomiarami
tSimEnd = 300
t_step = 1
t = 0
hStart = 4000 # wysokosc poczatkowa
vStart = 10 # predkosc m/s poczatkowa, dodatnia gdy zbliza się
Ms = 1000 # masa łazika
Mp = 6.41 * pow(10, 23) # masa planety
Rp = 3389000 # km promien
g = G * Mp / (Rp * Rp) # grawitacja planety
hCurr = hStart
vCurr = vStart
aCurr = g
Fmax = 15000 # N maksymalna przepustnica
Fcurr = 0 # obecna przepustnica
Fsum = -Fmax / Ms + g
time_to_distance_num = time_to_reach_distance_num(hStart, vCurr, aCurr)
thrust_time_to_distance_num = time_to_reach_with_thrust(hStart, vCurr)
# time_to_distance_an = time_to_reach_distance_an(hStart, vCurr, aCurr)
dt = []
h = []
v = [] # na plusie, gdy spada
a = []
f = []
thrust_activated = False
while (t < tSimEnd):
print("\n", t, ":\tt num:", time_to_distance_num)
print("\tthrust:", thrust_time_to_distance_num)
# print(t, ":\tt an:", time_to_distance_an )
print("\td:", hCurr)
print("\tv:", vCurr)
time_to_distance_num = time_to_reach_distance_num(hCurr, vCurr, aCurr)
thrust_time_to_distance_num = time_to_reach_with_thrust(hCurr, vCurr)
# time_to_distance_an = time_to_reach_distance_an(hCurr, vCurr, aCurr)
dt.append(t)
a.append(aCurr)
v.append(vCurr)
h.append(hCurr)
f.append(F(vCurr, hCurr) / Ms)
if thrust_time_to_distance_num == -1:
aCurr = Fsum
else:
aCurr = g # (F(vCurr, hCurr) / Ms)
vCurr += aCurr * t_step
hCurr -= vCurr * t_step
t += t_step
if hCurr <= 0 and vCurr > 10:
print("crash")
break
else:
if hCurr <= 0:
print("Landed!")
break
plt.subplot(1, 4, 1)
plt.plot(dt, h)
plt.title("Wysokość")
plt.xlabel("Czas [s]")
plt.ylabel("Wysokość [m]")
plt.grid(True)
#
plt.subplot(1, 4, 2)
plt.plot(dt, v)
plt.title("prędkość")
plt.xlabel("Czas [s]")
plt.ylabel("v")
plt.grid(True)
plt.subplot(1, 4, 3)
plt.plot(dt, a)
# plt.legend(["u_pi", "u"])
plt.title("przyspieszenie")
plt.xlabel("Czas [s]")
plt.ylabel("a")
plt.grid(True)
plt.show()