-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain4.py
210 lines (183 loc) · 7.3 KB
/
train4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import argparse
parser = argparse.ArgumentParser(description='')
parser.add_argument('-g', '--gpu', default='1')
parser.add_argument('-p', '--phase', default='train')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
phase = args.phase
from typing import Tuple
import logging
from logging.config import dictConfig
import matplotlib.pyplot as plt
import loss4
import data
import utils
import storage
import torch
from tqdm import tqdm
import numpy as np
import model4
import torchsnooper
import test4
data_dir = '/home/jqshen/MyCode/MyModel/dataset'
model_save_path = '/home/jqshen/MyCode/MyModel/checkpoints/hover4.tar'
log_path = '/home/jqshen/MyCode/MyModel/hover4.log'
metric_store_path = '/home/jqshen/MyCode/MyModel/hover4.npy'
C_LOGGING = {
'version': 1,
'disable_existing_loggers': True,
'loggers': {
'': {
'level': 'DEBUG',
'handlers': ['console', 'file']
},
},
'formatters': {
'console': {
'format': "%(asctime)s - %(name)-18s - %(levelname)-8s"
" - %(message)s",
'datefmt': '%H:%M:%S'},
'file': {
'format': "%(asctime)s :: %(levelname)s :: %(funcName)s in "
"%(filename)s (l:%(lineno)d) :: %(message)s",
'datefmt': '%Y-%m-%d %H:%M:%S'
},
},
'handlers': {
'console': {
'level': 'INFO',
'class': 'logging.StreamHandler',
'formatter': 'console',
'stream': 'ext://sys.stdout'
},
'file': {
'level': 'DEBUG',
'class': 'logging.FileHandler',
'filename': log_path, # 这是将普通日志写入到日志文件中的方法,
'formatter': 'file'
}
},
}
dictConfig(C_LOGGING)
logger = logging.getLogger('')
class Trainer(object):
def __init__(self, model, batch_size: int, max_epoch: int, lr: float,
val_freq, model_save_path, data_dir: str, phase: str,
input_shape: Tuple[int, int] = (256, 256), checkpoint_path: str = None, continue_train=False):
self.phase = phase
self.batch_size = batch_size
self.lr = lr
self.max_epoch = max_epoch
# self.val_freq: int = val_freq
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.net = model
self.net = self.net.to(self.device)
self.checkpoint_path = checkpoint_path
self.model_save_path: str = model_save_path
if continue_train:
self.net.load_state_dict(torch.load(self.model_save_path))
self.optimizer = torch.optim.Adam(self.net.parameters(),
lr=self.lr)
# self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, mode="min", patience=3,
# verbose=True, min_lr=3e-6)
self.scheduler = torch.optim.lr_scheduler.StepLR(optimizer=self.optimizer, step_size=10, gamma=0.6)
self.hoverloss = loss4.HoverLoss()
self.best_loss: float = float("inf") # Very high
self.val_freq = val_freq
self.dataloaders = {
'train': data.provider(
data_folder=data_dir,
phase='train',
batch_size=self.batch_size,
input_shape=input_shape
),
'val': data.provider(
data_folder=data_dir,
phase='val',
batch_size=int((self.batch_size) / 4),
input_shape=input_shape
)
}
self.store = {'train': {'loss': [], 'La': [], 'Lb': []}, 'val': {'loss': [], 'La': [], 'Lb': []}}
self.epoch_loss = {'loss': [], 'La': [], 'Lb': []}
# @torchsnooper.snoop()
def iterate(self,
epoch: int,
phase: str):
self.net.train(phase == "train")
dataloader = self.dataloaders[phase]
for itr, (images, targets) in tqdm(enumerate(dataloader), total=len(dataloader)):
images = images.to(self.device).float()
N = images.shape[0]
hv_logits = self.net(images)
hv_targets = utils.get_hv_targets(targets[:, 0, :, :])
hv_targets = hv_targets.to(self.device)
loss, La, Lb = self.hoverloss(hv_logits, hv_targets)
if phase == "train":
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
# Update metrics for this batch
with torch.no_grad():
loss = loss.detach()
La=La.detach()
# Lb=Lb.detach()
self.epoch_loss['loss'].append(loss.item())
self.epoch_loss['La'].append(La.item())
# self.epoch_loss['Lb'].append(Lb.item())
self.store[phase]['loss'].append(sum(self.epoch_loss['loss']) / len(self.epoch_loss['loss']))
self.store[phase]['La'].append(sum(self.epoch_loss['La']) / len(self.epoch_loss['La']))
# self.store[phase]['Lb'].append(sum(self.epoch_loss['Lb']) / len(self.epoch_loss['Lb']))
self.epoch_loss['loss'] = [0]
self.epoch_loss['La'] = [0]
# self.epoch_loss['Lb'] = [0]
return self.store[phase]['loss'][-1]
def start(self):
for epoch in range(self.max_epoch):
self.iterate(epoch, self.phase)
self.scheduler.step(epoch)
if epoch % self.val_freq == 0:
val_loss = self.iterate(epoch, "val")
# self.scheduler.step(val_loss)
if val_loss < self.best_loss:
logger = logging.getLogger('')
logger.info("****** New optimal found, saving state ******")
self.best_loss = val_loss
torch.save(self.net.state_dict(), self.model_save_path)
print()
np.save(metric_store_path, self.store)
if __name__ == "__main__":
model_trainer = Trainer(model=model4.HoverNet(), batch_size=8, max_epoch=50, lr=1e-4,
val_freq=10, model_save_path=model_save_path, data_dir=data_dir,
input_shape=(256, 256), phase=phase, continue_train=False)
model_trainer.start()
def metric_plot(phase, value):
plt.figure(figsize=(15, 5))
plt.plot(range(len(value['loss'])),
value['loss'],
label=f' {phase}loss')
plt.plot(range(len(value['La'])),
value['La'],
label=f' {phase}La')
# plt.plot(range(len(value['Lb'])),
# value['Lb'],
# label=f' {phase}Lb')
# plt.plot(range(len(scores["val"])),
# scores["val"],
# label=f'val {name}')
plt.title(f'{phase} plot')
plt.xlabel('Epoch')
plt.ylabel('loss')
plt.legend()
plt.savefig(f'/home/jqshen/MyCode/MyModel/{phase}_loss.png')
for phase, value in model_trainer.store.items():
metric_plot(phase, value)
tester = test4.predict(datafolder=data_dir, model_save_path=model_save_path)
tester.start()
'''
model_trainer.meter
{'loss': {('train', 'val'): []}, 'iou': {('train', 'val'): []},
'dice': {('train', 'val'): []}, 'acc': {('train', 'val'): []},
'prec': {('train', 'val'): []}}
'''