-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.py
133 lines (107 loc) · 4.99 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# PyTorch
import torch
import torch.nn as nn
from torch.nn import functional as F
import utils
import logging
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class DiceLoss(nn.Module):
def __init__(self):
super(DiceLoss, self).__init__()
def forward(self, input: torch.Tensor, target: torch.Tensor, smooth: float = 1e-3) -> torch.Tensor:
assert input.dim() == 3
assert target.dim() == 3
N = target.size(0)
input_flat = input.view(N, -1)
target_flat = target.view(N, -1)
intersection = input_flat * target_flat
loss = (2 * intersection.sum(dim=1) + smooth) / (input_flat.sum(dim=1) + target_flat.sum(dim=1) + smooth)
loss = 1 - loss.mean().squeeze()
return loss
class DiceCoeff(nn.Module):
def __init__(self):
super(DiceCoeff, self).__init__()
self.dice = DiceLoss()
def forward(self,
inputs: torch.Tensor,
targets: torch.Tensor,
smooth: float = 1e-3) -> torch.Tensor:
assert targets.dim() == 3
tmp = torch.zeros(size=inputs.shape).cuda(device)
targets = tmp.scatter_(dim=1, index=targets.unsqueeze(dim=1).long(), value=1).cuda()
assert inputs.shape[1] in (2, 5)
assert targets.shape == inputs.shape
totalloss = 0
for c in range(inputs.shape[1]):
totalloss += self.dice(inputs[:, c, :, :].squeeze(), targets[:, c, :, :].squeeze())
return totalloss.cuda() / (inputs.shape[1])
class _NPBranchLoss(nn.Module):
def __init__(self):
super(_NPBranchLoss, self).__init__()
self.dice = DiceCoeff()
self.ce = torch.nn.NLLLoss()
def forward(self,
np_logits: torch.Tensor,
np_targets: torch.Tensor) -> torch.Tensor:
assert np_targets.dim() == 3
# nc_targets = F.one_hot(nc_targets, num_classes=5)
# nc_targets = nc_targets.permute(0, 3, 1, 2)
# F.cross_entropy can automatically do the one hot for targets
# https://blog.csdn.net/zhaowangbo/article/details/100039837
CEloss = self.ce(F.log_softmax(np_logits, dim=1), np_targets.long())
Dice = self.dice(F.softmax(np_logits, dim=1), np_targets)
loss = CEloss + Dice
# logger = logging.getLogger('')
# logger.info(f'NP_CE{CEloss.item()}, NP_Dice{Dice.item()}')
return loss
class _HVBranchLoss(nn.Module):
def __init__(self):
super(_HVBranchLoss, self).__init__()
self.mse1 = torch.nn.MSELoss(size_average=True, reduce=True)
self.mse2 = torch.nn.MSELoss(size_average=True, reduce=True)
def forward(self,
hv_logits: torch.Tensor,
hv_targets: torch.Tensor) -> torch.Tensor:
hv_logits = torch.tanh(hv_logits)
La = self.mse1(hv_logits, hv_targets.float())
h_grads, v_grads = utils.get_gradient_hv(hv_logits, h_ch=0, v_ch=1)
h_grads_tar, v_grads_tar = utils.get_gradient_hv(hv_targets, h_ch=0, v_ch=1)
h_grads, v_grads, h_grads_tar, v_grads_tar = h_grads.cuda(), v_grads.cuda(), h_grads_tar.cuda(), v_grads_tar.cuda()
Lb = self.mse2(h_grads.squeeze(), h_grads_tar.squeeze().float()) + F.mse_loss(v_grads.squeeze(),
v_grads_tar.squeeze().float())
loss = La
return loss
class _NCBranchLoss(nn.Module):
def __init__(self):
super(_NCBranchLoss, self).__init__()
self.dice = DiceCoeff()
self.ce = torch.nn.NLLLoss()
def forward(self, nc_logits: torch.Tensor, nc_targets: torch.Tensor) -> torch.Tensor:
nc_targets = nc_targets.squeeze()
assert nc_targets.dim() == 3
CEloss = self.ce(F.log_softmax(nc_logits, dim=1), nc_targets.long())
Dice = self.dice(F.softmax(nc_logits, dim=1), nc_targets)
loss = CEloss + Dice
# logger = logging.getLogger('')
# logger.info(f'NC_CE{CEloss.item()}, NC_Dice{Dice.item()}')
return loss
class HoverLoss(nn.Module):
def __init__(self):
super(HoverLoss, self).__init__()
self.np_loss = _NPBranchLoss()
self.hv_loss = _HVBranchLoss()
self.nc_loss = _NCBranchLoss()
# weights=1,2, 1,1, 1,1
def forward(self, np_logits, np_targets,
hv_logits, hv_targets,
nc_logits, nc_targets):
# logits N*2*H*W nc_logits N*5*H*W
# targets N*H*W except hv_targets N*2*H*W 2 Channel: hv_x and hv_y
assert (np_targets.dim() == 3 and hv_targets.dim() == 4 and nc_targets.dim() == 3)
assert (np_logits.dim() == 4 and hv_logits.dim() == 4 and nc_logits.dim() == 4)
assert (np_logits.shape[1] == 2 and hv_logits.shape[1] == 2 and nc_logits.shape[1] == 5)
loss_np = self.np_loss(np_logits, np_targets)
loss_hv = self.hv_loss(hv_logits, hv_targets)
loss_nc = self.nc_loss(nc_logits, nc_targets)
loss = 2*loss_np + loss_nc + 40*loss_hv
return loss, loss_np, loss_hv, loss_nc