-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathUF23Field.cc
632 lines (562 loc) · 18.9 KB
/
UF23Field.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
#include "UF23Field.h"
#include <exception>
#include <limits>
#include <string>
#include <cmath>
// local helper functions and constants
namespace utl {
template<typename T>
Vector3 CylToCart(const T v, const double cosPhi, const double sinPhi)
{
return Vector3(v[0] * cosPhi - v[1] * sinPhi,
v[0] * sinPhi + v[1] * cosPhi,
v[2]);
}
template<typename T>
Vector3 CartToCyl(const T v, const double cosPhi, const double sinPhi)
{
return Vector3(v[0] * cosPhi + v[1] * sinPhi,
-v[0] * sinPhi + v[1] * cosPhi,
v[2]);
}
// logistic sigmoid function
inline
double
Sigmoid(const double x, const double x0, const double w)
{
return 1 / (1 + exp(-(x-x0)/w));
}
// angle between v0 = (cos(phi0), sin(phi0)) and v1 = (cos(phi1), sin(phi1))
inline
double
DeltaPhi(const double phi0, const double phi1)
{
return acos(cos(phi1)*cos(phi0) + sin(phi1)*sin(phi0));
}
const double kPi = 3.1415926535897932384626;
const double kTwoPi = 2*kPi;
const double degree = kPi/180.;
const double kpc = 1;
const double microgauss = 1;
const double megayear = 1;
const double Gpc = 1e6*kpc;
const double pc = 1e-3*kpc;
const double second = megayear / (1e6*60*60*24*365.25);
const double kilometer = kpc / 3.0856775807e+16;
}
// initialization of static members
const std::map<UF23Field::ModelType, std::string> UF23Field::fModelNames =
{ {base, "base"},
{neCL, "neCL"},
{expX, "expX"},
{spur, "spur"},
{cre10,"cre10"},
{synCG, "synCG"},
{twistX, "twistX"},
{nebCor, "nebCor"}
};
UF23Field::UF23Field(const ModelType mt, const double maxRadiusInKpc) :
fModelType(mt),
fMaxRadiusSquared(pow(maxRadiusInKpc*utl::kpc, 2))
{
using namespace utl;
// all but expX model have a-->\infty, Eq.(38)
fPoloidalA = 1 * Gpc;
switch (fModelType) {
// ---------------------------------------------
case base: {
fDiskB1 = 1.0878565e+00 * microgauss;
fDiskB2 = 2.6605034e+00 * microgauss;
fDiskB3 = 3.1166311e+00 * microgauss;
fDiskH = 7.9408965e-01 * kpc;
fDiskPhase1 = 2.6316589e+02 * degree;
fDiskPhase2 = 9.7782269e+01 * degree;
fDiskPhase3 = 3.5112281e+01 * degree;
fDiskPitch = 1.0106900e+01 * degree;
fDiskW = 1.0720909e-01 * kpc;
fPoloidalB = 9.7775487e-01 * microgauss;
fPoloidalP = 1.4266186e+00 * kpc;
fPoloidalR = 7.2925417e+00 * kpc;
fPoloidalW = 1.1188158e-01 * kpc;
fPoloidalZ = 4.4597373e+00 * kpc;
fStriation = 3.4557571e-01;
fToroidalBN = 3.2556760e+00 * microgauss;
fToroidalBS = -3.0914569e+00 * microgauss;
fToroidalR = 1.0193815e+01 * kpc;
fToroidalW = 1.6936993e+00 * kpc;
fToroidalZ = 4.0242749e+00 * kpc;
break;
}
case cre10: {
// ---------------------------------------------
fDiskB1 = 1.2035697e+00 * microgauss;
fDiskB2 = 2.7478490e+00 * microgauss;
fDiskB3 = 3.2104342e+00 * microgauss;
fDiskH = 8.0844932e-01 * kpc;
fDiskPhase1 = 2.6515882e+02 * degree;
fDiskPhase2 = 9.8211313e+01 * degree;
fDiskPhase3 = 3.5944588e+01 * degree;
fDiskPitch = 1.0162759e+01 * degree;
fDiskW = 1.0824003e-01 * kpc;
fPoloidalB = 9.6938453e-01 * microgauss;
fPoloidalP = 1.4150957e+00 * kpc;
fPoloidalR = 7.2987296e+00 * kpc;
fPoloidalW = 1.0923051e-01 * kpc;
fPoloidalZ = 4.5748332e+00 * kpc;
fStriation = 2.4950386e-01;
fToroidalBN = 3.7308133e+00 * microgauss;
fToroidalBS = -3.5039958e+00 * microgauss;
fToroidalR = 1.0407507e+01 * kpc;
fToroidalW = 1.7398375e+00 * kpc;
fToroidalZ = 2.9272800e+00 * kpc;
break;
}
case nebCor: {
// ---------------------------------------------
fDiskB1 = 1.4081935e+00 * microgauss;
fDiskB2 = 3.5292400e+00 * microgauss;
fDiskB3 = 4.1290147e+00 * microgauss;
fDiskH = 8.1151971e-01 * kpc;
fDiskPhase1 = 2.6447529e+02 * degree;
fDiskPhase2 = 9.7572660e+01 * degree;
fDiskPhase3 = 3.6403798e+01 * degree;
fDiskPitch = 1.0151183e+01 * degree;
fDiskW = 1.1863734e-01 * kpc;
fPoloidalB = 1.3485916e+00 * microgauss;
fPoloidalP = 1.3414395e+00 * kpc;
fPoloidalR = 7.2473841e+00 * kpc;
fPoloidalW = 1.4318227e-01 * kpc;
fPoloidalZ = 4.8242603e+00 * kpc;
fStriation = 3.8610837e-10;
fToroidalBN = 4.6491142e+00 * microgauss;
fToroidalBS = -4.5006610e+00 * microgauss;
fToroidalR = 1.0205288e+01 * kpc;
fToroidalW = 1.7004868e+00 * kpc;
fToroidalZ = 3.5557767e+00 * kpc;
break;
}
case neCL: {
// ---------------------------------------------
fDiskB1 = 1.4259645e+00 * microgauss;
fDiskB2 = 1.3543223e+00 * microgauss;
fDiskB3 = 3.4390669e+00 * microgauss;
fDiskH = 6.7405199e-01 * kpc;
fDiskPhase1 = 1.9961898e+02 * degree;
fDiskPhase2 = 1.3541461e+02 * degree;
fDiskPhase3 = 6.4909767e+01 * degree;
fDiskPitch = 1.1867859e+01 * degree;
fDiskW = 6.1162799e-02 * kpc;
fPoloidalB = 9.8387831e-01 * microgauss;
fPoloidalP = 1.6773615e+00 * kpc;
fPoloidalR = 7.4084361e+00 * kpc;
fPoloidalW = 1.4168192e-01 * kpc;
fPoloidalZ = 3.6521188e+00 * kpc;
fStriation = 3.3600213e-01;
fToroidalBN = 2.6256593e+00 * microgauss;
fToroidalBS = -2.5699466e+00 * microgauss;
fToroidalR = 1.0134257e+01 * kpc;
fToroidalW = 1.1547728e+00 * kpc;
fToroidalZ = 4.5585463e+00 * kpc;
break;
}
case spur: {
// ---------------------------------------------
fDiskB1 = -4.2993328e+00 * microgauss;
fDiskH = 7.5019749e-01 * kpc;
fDiskPhase1 = 1.5589875e+02 * degree;
fDiskPitch = 1.2074432e+01 * degree;
fDiskW = 1.2263120e-01 * kpc;
fPoloidalB = 9.9302987e-01 * microgauss;
fPoloidalP = 1.3982374e+00 * kpc;
fPoloidalR = 7.1973387e+00 * kpc;
fPoloidalW = 1.2262244e-01 * kpc;
fPoloidalZ = 4.4853270e+00 * kpc;
fSpurCenter = 1.5718686e+02 * degree;
fSpurLength = 3.1839577e+01 * degree;
fSpurWidth = 1.0318114e+01 * degree;
fStriation = 3.3022369e-01;
fToroidalBN = 2.9286724e+00 * microgauss;
fToroidalBS = -2.5979895e+00 * microgauss;
fToroidalR = 9.7536425e+00 * kpc;
fToroidalW = 1.4210055e+00 * kpc;
fToroidalZ = 6.0941229e+00 * kpc;
break;
}
case synCG: {
// ---------------------------------------------
fDiskB1 = 8.1386878e-01 * microgauss;
fDiskB2 = 2.0586930e+00 * microgauss;
fDiskB3 = 2.9437335e+00 * microgauss;
fDiskH = 6.2172353e-01 * kpc;
fDiskPhase1 = 2.2988551e+02 * degree;
fDiskPhase2 = 9.7388282e+01 * degree;
fDiskPhase3 = 3.2927367e+01 * degree;
fDiskPitch = 9.9034844e+00 * degree;
fDiskW = 6.6517521e-02 * kpc;
fPoloidalB = 8.0883734e-01 * microgauss;
fPoloidalP = 1.5820957e+00 * kpc;
fPoloidalR = 7.4625235e+00 * kpc;
fPoloidalW = 1.5003765e-01 * kpc;
fPoloidalZ = 3.5338550e+00 * kpc;
fStriation = 6.3434763e-01;
fToroidalBN = 2.3991193e+00 * microgauss;
fToroidalBS = -2.0919944e+00 * microgauss;
fToroidalR = 9.4227834e+00 * kpc;
fToroidalW = 9.1608418e-01 * kpc;
fToroidalZ = 5.5844594e+00 * kpc;
break;
}
case twistX: {
// ---------------------------------------------
fDiskB1 = 1.3741995e+00 * microgauss;
fDiskB2 = 2.0089881e+00 * microgauss;
fDiskB3 = 1.5212463e+00 * microgauss;
fDiskH = 9.3806180e-01 * kpc;
fDiskPhase1 = 2.3560316e+02 * degree;
fDiskPhase2 = 1.0189856e+02 * degree;
fDiskPhase3 = 5.6187572e+01 * degree;
fDiskPitch = 1.2100979e+01 * degree;
fDiskW = 1.4933338e-01 * kpc;
fPoloidalB = 6.2793114e-01 * microgauss;
fPoloidalP = 2.3292519e+00 * kpc;
fPoloidalR = 7.9212358e+00 * kpc;
fPoloidalW = 2.9056201e-01 * kpc;
fPoloidalZ = 2.6274437e+00 * kpc;
fStriation = 7.7616317e-01;
fTwistingTime = 5.4733549e+01 * megayear;
break;
}
case expX: {
// ---------------------------------------------
fDiskB1 = 9.9258148e-01 * microgauss;
fDiskB2 = 2.1821124e+00 * microgauss;
fDiskB3 = 3.1197345e+00 * microgauss;
fDiskH = 7.1508681e-01 * kpc;
fDiskPhase1 = 2.4745741e+02 * degree;
fDiskPhase2 = 9.8578879e+01 * degree;
fDiskPhase3 = 3.4884485e+01 * degree;
fDiskPitch = 1.0027070e+01 * degree;
fDiskW = 9.8524736e-02 * kpc;
fPoloidalA = 6.1938701e+00 * kpc;
fPoloidalB = 5.8357990e+00 * microgauss;
fPoloidalP = 1.9510779e+00 * kpc;
fPoloidalR = 2.4994376e+00 * kpc;
// internally, xi is fitted and z = tan(xi)*a
fPoloidalXi = 2.0926122e+01 * degree;
fPoloidalZ = fPoloidalA*tan(fPoloidalXi);
fStriation = 5.1440500e-01;
fToroidalBN = 2.7077434e+00 * microgauss;
fToroidalBS = -2.5677104e+00 * microgauss;
fToroidalR = 1.0134022e+01 * kpc;
fToroidalW = 2.0956159e+00 * kpc;
fToroidalZ = 5.4564991e+00 * kpc;
break;
}
default: {
throw std::runtime_error("unknown field model");
break;
}
}
fSinPitch = sin(fDiskPitch);
fCosPitch = cos(fDiskPitch);
fTanPitch = tan(fDiskPitch);
}
Vector3
UF23Field::operator()(const Vector3& posInKpc)
const
{
const auto pos = posInKpc * utl::kpc;
if (pos.SquaredLength() > fMaxRadiusSquared)
return Vector3(0, 0, 0);
else {
const auto diskField = GetDiskField(pos);
const auto haloField = GetHaloField(pos);
return (diskField + haloField) / utl::microgauss;
}
}
Vector3
UF23Field::GetDiskField(const Vector3& pos)
const
{
if (fModelType == spur)
return GetSpurField(pos.x, pos.y, pos.z);
else
return GetSpiralField(pos.x, pos.y, pos.z);
}
Vector3
UF23Field::GetHaloField(const Vector3& pos)
const
{
if (fModelType == twistX)
return GetTwistedHaloField(pos.x, pos.y, pos.z);
else
return
GetToroidalHaloField(pos.x, pos.y, pos.z) +
GetPoloidalHaloField(pos.x, pos.y, pos.z);
}
Vector3
UF23Field::GetTwistedHaloField(const double x, const double y, const double z)
const
{
const double r = sqrt(x*x + y*y);
const double cosPhi = r > std::numeric_limits<double>::min() ? x / r : 1;
const double sinPhi = r > std::numeric_limits<double>::min() ? y / r : 0;
const Vector3 bXCart = GetPoloidalHaloField(x, y, z);
const double bXCartTmp[3] = {bXCart.x, bXCart.y, bXCart.z};
const Vector3 bXCyl = utl::CartToCyl(bXCartTmp, cosPhi, sinPhi);
const double bZ = bXCyl.z;
const double bR = bXCyl.x;
double bPhi = 0;
if (fTwistingTime != 0 && r != 0) {
// radial rotation curve parameters (fit to Reid et al 2014)
const double v0 = -240 * utl::kilometer/utl::second;
const double r0 = 1.6 * utl::kpc;
// vertical gradient (Levine+08)
const double z0 = 10 * utl::kpc;
// Eq.(43)
const double fr = 1 - exp(-r/r0);
// Eq.(44)
const double t0 = exp(2*std::abs(z)/z0);
const double gz = 2 / (1 + t0);
// Eq. (46)
const double signZ = z < 0 ? -1 : 1;
const double deltaZ = -signZ * v0 * fr / z0 * t0 * pow(gz, 2);
// Eq. (47)
const double deltaR = v0 * ((1-fr)/r0 - fr/r) * gz;
// Eq.(45)
bPhi = (bZ * deltaZ + bR * deltaR) * fTwistingTime;
}
const double bCylX[3] = {bR, bPhi , bZ};
return utl::CylToCart(bCylX, cosPhi, sinPhi);
}
Vector3
UF23Field::GetToroidalHaloField(const double x, const double y, const double z)
const
{
const double r2 = x*x + y*y;
const double r = sqrt(r2);
const double absZ = std::abs(z);
const double b0 = z >= 0 ? fToroidalBN : fToroidalBS;
const double rh = fToroidalR;
const double z0 = fToroidalZ;
const double fwh = fToroidalW;
const double sigmoidR = utl::Sigmoid(r, rh, fwh);
const double sigmoidZ = utl::Sigmoid(absZ, fDiskH, fDiskW);
// Eq. (21)
const double bPhi = b0 * (1. - sigmoidR) * sigmoidZ * exp(-absZ/z0);
const double bCyl[3] = {0, bPhi, 0};
const double cosPhi = r > std::numeric_limits<double>::min() ? x / r : 1;
const double sinPhi = r > std::numeric_limits<double>::min() ? y / r : 0;
return utl::CylToCart(bCyl, cosPhi, sinPhi);
}
Vector3
UF23Field::GetPoloidalHaloField(const double x, const double y, const double z)
const
{
const double r2 = x*x + y*y;
const double r = sqrt(r2);
const double c = pow(fPoloidalA/fPoloidalZ, fPoloidalP);
const double a0p = pow(fPoloidalA, fPoloidalP);
const double rp = pow(r, fPoloidalP);
const double abszp = pow(std::abs(z), fPoloidalP);
const double cabszp = c*abszp;
/*
since $\sqrt{a^2 + b} - a$ is numerical unstable for $b\ll a$,
we use $(\sqrt{a^2 + b} - a) \frac{\sqrt{a^2 + b} + a}{\sqrt{a^2
+ b} + a} = \frac{b}{\sqrt{a^2 + b} + a}$}
*/
const double t0 = a0p + cabszp - rp;
const double t1 = sqrt(pow(t0, 2) + 4*a0p*rp);
const double ap = 2*a0p*rp / (t1 + t0);
double a = 0;
if (ap < 0) {
if (r > std::numeric_limits<double>::min()) {
// this should never happen
throw std::runtime_error("ap = " + std::to_string(ap));
}
else
a = 0;
}
else
a = pow(ap, 1/fPoloidalP);
// Eq.(29) and Eq.(32)
const double radialDependence =
fModelType == expX ?
exp(-a/fPoloidalR) :
1 - utl::Sigmoid(a, fPoloidalR, fPoloidalW);
// Eq.(28)
const double Bzz = fPoloidalB * radialDependence;
// (r/a)
const double rOverA = 1 / pow(2*a0p / (t1 + t0), 1/fPoloidalP);
// Eq.(35) for p=n
const double signZ = z < 0 ? -1 : 1;
const double Br =
Bzz * c * a / rOverA * signZ * pow(std::abs(z), fPoloidalP - 1) / t1;
// Eq.(36) for p=n
const double Bz = Bzz * pow(rOverA, fPoloidalP-2) * (ap + a0p) / t1;
if (r < std::numeric_limits<double>::min())
return Vector3(0, 0, Bz);
else {
const double bCylX[3] = {Br, 0 , Bz};
const double cosPhi = x / r;
const double sinPhi = y / r;
return utl::CylToCart(bCylX, cosPhi, sinPhi);
}
}
Vector3
UF23Field::GetSpurField(const double x, const double y, const double z)
const
{
// reference approximately at solar radius
const double rRef = 8.2*utl::kpc;
// cylindrical coordinates
const double r2 = x*x + y*y;
const double r = sqrt(r2);
if (r < std::numeric_limits<double>::min())
return Vector3(0, 0, 0);
double phi = atan2(y, x);
if (phi < 0)
phi += utl::kTwoPi;
const double phiRef = fDiskPhase1;
int iBest = -2;
double bestDist = -1;
for (int i = -1; i <= 1; ++i) {
const double pphi = phi - phiRef + i*utl::kTwoPi;
const double rr = rRef*exp(pphi * fTanPitch);
if (bestDist < 0 || std::abs(r-rr) < bestDist) {
bestDist = std::abs(r-rr);
iBest = i;
}
}
if (iBest == 0) {
const double phi0 = phi - log(r/rRef) / fTanPitch;
// Eq. (16)
const double deltaPhi0 = utl::DeltaPhi(phiRef, phi0);
const double delta = deltaPhi0 / fSpurWidth;
const double B = fDiskB1 * exp(-0.5*pow(delta, 2));
// Eq. (18)
const double wS = 5*utl::degree;
const double phiC = fSpurCenter;
const double deltaPhiC = utl::DeltaPhi(phiC, phi);
const double lC = fSpurLength;
const double gS = 1 - utl::Sigmoid(std::abs(deltaPhiC), lC, wS);
// Eq. (13)
const double hd = 1 - utl::Sigmoid(std::abs(z), fDiskH, fDiskW);
// Eq. (17)
const double bS = rRef/r * B * hd * gS;
const double bCyl[3] = {bS * fSinPitch, bS * fCosPitch, 0};
const double cosPhi = x / r;
const double sinPhi = y / r;
return utl::CylToCart(bCyl, cosPhi, sinPhi);
}
else
return Vector3(0, 0, 0);
}
Vector3
UF23Field::GetSpiralField(const double x, const double y, const double z)
const
{
// reference radius
const double rRef = 5*utl::kpc;
// inner boundary of spiral field
const double rInner = 5*utl::kpc;
const double wInner = 0.5*utl::kpc;
// outer boundary of spiral field
const double rOuter = 20*utl::kpc;
const double wOuter = 0.5*utl::kpc;
// cylindrical coordinates
const double r2 = x*x + y*y;
if (r2 == 0)
return Vector3(0, 0, 0);
const double r = sqrt(r2);
const double phi = atan2(y, x);
// Eq.(13)
const double hdz = 1 - utl::Sigmoid(std::abs(z), fDiskH, fDiskW);
// Eq.(14) times rRef divided by r
const double rFacI = utl::Sigmoid(r, rInner, wInner);
const double rFacO = 1 - utl::Sigmoid(r, rOuter, wOuter);
// (using lim r--> 0 (1-exp(-r^2))/r --> r - r^3/2 + ...)
const double rFac = r > 1e-5*utl::pc ? (1-exp(-r*r)) / r : r * (1 - r2/2);
const double gdrTimesRrefByR = rRef * rFac * rFacO * rFacI;
// Eq. (12)
const double phi0 = phi - log(r/rRef) / fTanPitch;
// Eq. (10)
const double b =
fDiskB1 * cos(1 * (phi0 - fDiskPhase1)) +
fDiskB2 * cos(2 * (phi0 - fDiskPhase2)) +
fDiskB3 * cos(3 * (phi0 - fDiskPhase3));
// Eq. (11)
const double fac = hdz * gdrTimesRrefByR;
const double bCyl[3] =
{ b * fac * fSinPitch,
b * fac * fCosPitch,
0};
const double cosPhi = x / r;
const double sinPhi = y / r;
return utl::CylToCart(bCyl, cosPhi, sinPhi);
}
namespace utl {
const std::vector<double> unitConv =
{
microgauss, //eDiskB1,
microgauss, //eDiskB2,
microgauss, //eDiskB3,
kpc, //eDiskH,
degree, //eDiskPhase1,
degree, //eDiskPhase2,
degree, //eDiskPhase3,
degree, //eDiskPitch,
kpc, //eDiskW,
kpc, //ePoloidalA,
microgauss, //ePoloidalB,
1, //ePoloidalP,
kpc, //ePoloidalR,
kpc, //ePoloidalW,
kpc, //ePoloidalZ,
degree, //ePoloidalXi,
degree, //eSpurCenter,
degree, //eSpurLength,
degree, //eSpurWidth,
1, //eStriation,
microgauss, //eToroidalBN,
microgauss, //eToroidalBS,
kpc, //eToroidalR,
kpc, //eToroidalW,
kpc, //eToroidalZ,
megayear //eTwistingTime
};
}
std::vector<double>
UF23Field::GetParameters()
const
{
using namespace utl;
if (unitConv.size() != eNpar)
throw std::runtime_error("invalid unit vector");
std::vector<double> retVec;
for (unsigned int i = 0; i < eNpar; ++i)
retVec.push_back(fParameters[i] / unitConv[i]);
return retVec;
}
void
UF23Field::SetParameters(const std::vector<double>& newpar)
{
using namespace utl;
if (newpar.size() != eNpar)
throw std::runtime_error("invalid parameter vector");
if (unitConv.size() != eNpar)
throw std::runtime_error("invalid unit vector");
for (unsigned int i = 0; i < eNpar; ++i)
fParameters[i] = newpar[i] * unitConv[i];
fSinPitch = sin(fDiskPitch);
fCosPitch = cos(fDiskPitch);
fTanPitch = tan(fDiskPitch);
if (fModelType == expX)
fPoloidalZ = fPoloidalA*tan(fPoloidalXi);
}
double
UF23Field::GetMaximumSquaredRadius()
const
{
return fMaxRadiusSquared / utl::kpc;
}