forked from junxia97/Mole-BERT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pretrain.py
285 lines (244 loc) · 13.9 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
from random import shuffle
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import argparse
from loader import MoleculeDataset
from dataloader import DataLoaderMasking, DataLoaderMaskingPred#, DataListLoader
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm
import numpy as np
from model import GNN, DiscreteGNN
from sklearn.metrics import roc_auc_score
from splitters import scaffold_split, random_split, random_scaffold_split
import pandas as pd
from util import MaskAtom
from torch_geometric.nn import global_add_pool, global_mean_pool, global_max_pool
from tensorboardX import SummaryWriter
import timeit
triplet_loss = nn.TripletMarginLoss(margin=0.0, p=2)
criterion = nn.CrossEntropyLoss()
class graphcl(nn.Module):
def __init__(self, gnn):
super(graphcl, self).__init__()
self.gnn = gnn
self.pool = global_mean_pool
self.projection_head = nn.Sequential(nn.Linear(300, 300), nn.ReLU(inplace=True), nn.Linear(300, 300))
def forward_cl(self, x, edge_index, edge_attr, batch):
x_node = self.gnn(x, edge_index, edge_attr)
x = self.pool(x_node, batch)
x = self.projection_head(x)
return x_node, x
def loss_cl(self, x1, x2):
T = 0.1
batch_size, _ = x1.size()
x1_abs = x1.norm(dim=1)
x2_abs = x2.norm(dim=1)
sim_matrix = torch.einsum('ik,jk->ij', x1, x2) / torch.einsum('i,j->ij', x1_abs, x2_abs)
sim_matrix = torch.exp(sim_matrix / T)
pos_sim = sim_matrix[range(batch_size), range(batch_size)]
loss = pos_sim / (sim_matrix.sum(dim=1) - pos_sim)
loss = - torch.log(loss).mean()
return loss
def loss_tri(self, x, x1, x2):
loss = triplet_loss(x, x1, x2)
return loss
class VectorQuantizer(nn.Module):
"""
VQ-VAE layer: Input any tensor to be quantized.
Args:
embedding_dim (int): the dimensionality of the tensors in the
quantized space. Inputs to the modules must be in this format as well.
num_embeddings (int): the number of vectors in the quantized space.
commitment_cost (float): scalar which controls the weighting of the loss terms (see
equation 4 in the paper - this variable is Beta).
"""
def __init__(self, embedding_dim, num_embeddings, commitment_cost):
super().__init__()
self.embedding_dim = embedding_dim
self.num_embeddings = num_embeddings
self.commitment_cost = commitment_cost
# initialize embeddings
self.embeddings = nn.Embedding(self.num_embeddings, self.embedding_dim)
def forward(self, x):
encoding_indices = self.get_code_indices(x)
print(encoding_indices[:5])
quantized = self.quantize(encoding_indices)
quantized = quantized.view_as(x)
# embedding loss: move the embeddings towards the encoder's output
q_latent_loss = F.mse_loss(quantized, x.detach())
# commitment loss
e_latent_loss = F.mse_loss(x, quantized.detach())
loss = q_latent_loss + self.commitment_cost * e_latent_loss
# Straight Through Estimator
quantized = x + (quantized - x).detach().contiguous()
return quantized, loss
def get_code_indices(self, flat_x):
# compute L2 distance
distances = (
torch.sum(flat_x ** 2, dim=1, keepdim=True) +
torch.sum(self.embeddings.weight ** 2, dim=1) -
2. * torch.matmul(flat_x, self.embeddings.weight.t())
) # [N, M]
encoding_indices = torch.argmin(distances, dim=1) # [N,]
return encoding_indices
def quantize(self, encoding_indices):
"""Returns embedding tensor for a batch of indices."""
return self.embeddings(encoding_indices)
def from_pretrained(self, model_file):
self.load_state_dict(torch.load(model_file))
def compute_accuracy(pred, target):
return float(torch.sum(torch.max(pred.detach(), dim = 1)[1] == target).cpu().item())/len(pred)
def train(args, epoch, model_list, tokenizer, dataset, optimizer_list, device):
model, linear_pred_atoms1, linear_pred_bonds1, linear_pred_atoms2, linear_pred_bonds2 = model_list
optimizer_model, optimizer_linear_pred_atoms1, optimizer_linear_pred_bonds1, optimizer_linear_pred_atoms2, optimizer_linear_pred_bonds2 = optimizer_list
model.train()
linear_pred_atoms1.train()
linear_pred_bonds1.train()
linear_pred_atoms2.train()
linear_pred_bonds2.train()
loss_accum = 0
acc_node_accum = 0
acc_edge_accum = 0
dataset1 = dataset.shuffle()
dataset2 = copy.deepcopy(dataset1)
loader1 = DataLoaderMaskingPred(dataset1, batch_size=args.batch_size, shuffle = False, num_workers = args.num_workers, mask_rate=args.mask_rate1, mask_edge=args.mask_edge)
loader2 = DataLoaderMaskingPred(dataset2, batch_size=args.batch_size, shuffle = False, num_workers = args.num_workers, mask_rate=args.mask_rate2, mask_edge=args.mask_edge)
epoch_iter = tqdm(zip(loader1, loader2), desc="Iteration")
for step, batch in enumerate(epoch_iter):
batch1, batch2 = batch
batch1 = batch1.to(device)
batch2 = batch2.to(device)
node_rep1, graph_rep1 = model.forward_cl(batch1.x, batch1.edge_index, batch1.edge_attr, batch1.batch)
node_rep2, graph_rep2 = model.forward_cl(batch2.x, batch2.edge_index, batch2.edge_attr, batch2.batch)
loss_cl = model.loss_cl(graph_rep1, graph_rep2)
with torch.no_grad():
batch_origin_x = copy.deepcopy(batch1.x)
batch_origin_x[batch1.masked_atom_indices] = batch1.mask_node_label
batch_origin_edge = copy.deepcopy(batch1.edge_attr)
batch_origin_edge[batch1.connected_edge_indices] = batch1.mask_edge_label
batch_origin_edge[batch1.connected_edge_indices + 1] = batch1.mask_edge_label
atom_ids = tokenizer.get_codebook_indices(batch_origin_x, batch1.edge_index, batch_origin_edge)
labels1 = atom_ids[batch1.masked_atom_indices]
labels2 = atom_ids[batch2.masked_atom_indices]
_, graph_rep = model.forward_cl(batch_origin_x, batch1.edge_index, batch_origin_edge, batch1.batch)
loss_tri = model.loss_tri(graph_rep, graph_rep1, graph_rep2)
loss_tricl = loss_cl + 0.1 * loss_tri
pred_node1 = linear_pred_atoms1(node_rep1[batch1.masked_atom_indices])
loss_mask = criterion(pred_node1.double(), labels1)
pred_node2 = linear_pred_atoms2(node_rep2[batch2.masked_atom_indices])
loss_mask += criterion(pred_node2.double(), labels2)
acc_node1 = compute_accuracy(pred_node1, labels1)
acc_node2 = compute_accuracy(pred_node2, labels2)
acc_node = (acc_node1 + acc_node2) * 0.5
acc_node_accum += acc_node
if args.mask_edge:
masked_edge_index1 = batch1.edge_index[:, batch1.connected_edge_indices]
edge_rep1 = node_rep1[masked_edge_index1[0]] + node_rep1[masked_edge_index1[1]]
pred_edge1= linear_pred_bonds1(edge_rep1)
loss_mask += criterion(pred_edge1.double(), batch1.mask_edge_label[:,0])
masked_edge_index2 = batch2.edge_index[:, batch2.connected_edge_indices]
edge_rep2 = node_rep2[masked_edge_index2[0]] + node_rep2[masked_edge_index2[1]]
pred_edge2 = linear_pred_bonds2(edge_rep2)
loss_mask += criterion(pred_edge2.double(), batch2.mask_edge_label[:,0])
acc_edge1 = compute_accuracy(pred_edge1, batch1.mask_edge_label[:,0])
acc_edge2 = compute_accuracy(pred_edge2, batch2.mask_edge_label[:,0])
acc_edge = (acc_edge1 + acc_edge2) * 0.5
acc_edge_accum += acc_edge
loss = loss_tricl + loss_mask
optimizer_model.zero_grad()
optimizer_linear_pred_atoms1.zero_grad()
optimizer_linear_pred_bonds1.zero_grad()
optimizer_linear_pred_atoms2.zero_grad()
optimizer_linear_pred_bonds2.zero_grad()
loss.backward()
optimizer_model.step()
optimizer_linear_pred_atoms1.step()
optimizer_linear_pred_bonds1.step()
optimizer_linear_pred_atoms2.step()
optimizer_linear_pred_bonds2.step()
loss_accum += float(loss.cpu().item())
epoch_iter.set_description(f"Epoch: {epoch} tloss: {loss:.4f} tacc: {acc_node:.4f}")
return loss_accum/step, acc_node_accum/step, acc_edge_accum/step
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch implementation of pre-training of graph neural networks')
parser.add_argument('--device', type=int, default=0,
help='which gpu to use if any (default: 0)')
parser.add_argument('--batch_size', type=int, default=256,
help='input batch size for training (default: 256)')
parser.add_argument('--epochs', type=int, default=20,
help='number of epochs to train (default: 100)')
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate (default: 0.001)')
parser.add_argument('--decay', type=float, default=0,
help='weight decay (default: 0)')
parser.add_argument('--num_layer', type=int, default=5,
help='number of GNN message passing layers (default: 5).')
parser.add_argument('--emb_dim', type=int, default=300,
help='embedding dimensions (default: 300)')
parser.add_argument('--num_tokens', type=int, default=512,
help='number of atom tokens (default: 512)')
parser.add_argument("--epochth", type=int, default=60)
parser.add_argument("--edge", type=int, default=1)
parser.add_argument('--dropout_ratio', type=float, default=0,
help='dropout ratio (default: 0)')
parser.add_argument('--mask_rate1', type=float, default=0.15,
help='dropout ratio (default: 0.15)')
parser.add_argument('--mask_rate2', type=float, default=0.30,
help='dropout ratio (default: 0.30)')
parser.add_argument('--mask_edge', type=int, default=1,
help='whether to mask edges or not together with atoms')
parser.add_argument('--JK', type=str, default="last",
help='how the node features are combined across layers. last, sum, max or concat')
parser.add_argument('--dataset', type=str, default = 'zinc_standard_agent', help='root directory of dataset for pretraining')
parser.add_argument('--input_model_file', type=str, default = '', help='filename to output the model')
parser.add_argument('--output_model_file', type=str, default = './model_gin/', help='filename to output the model')
parser.add_argument('--gnn_type', type=str, default="gin")
parser.add_argument('--seed', type=int, default=0, help = "Seed for splitting dataset.")
parser.add_argument('--num_workers', type=int, default = 8, help='number of workers for dataset loading')
args = parser.parse_args()
torch.manual_seed(0)
np.random.seed(0)
device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available() else torch.device("cpu")
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
dataset = MoleculeDataset("./dataset/" + args.dataset, dataset=args.dataset)
gnn = GNN(args.num_layer, args.emb_dim, JK = args.JK, drop_ratio = args.dropout_ratio, gnn_type = args.gnn_type)
model = graphcl(gnn).to(device)
tokenizer = GNN(args.num_layer, args.emb_dim, gnn_type = args.gnn_type).to(device)
tokenizer.from_pretrained(f"./checkpoints/vqencoder.pth")
codebook = VectorQuantizer(args.emb_dim, args.num_tokens, commitment_cost = 0.25).to(device)
codebook.from_pretrained(f"./checkpoints/vqquantizer.pth")
if not args.input_model_file == "":
model.gnn.from_pretrained(args.input_model_file)
linear_pred_atoms1 = torch.nn.Linear(args.emb_dim, 512).to(device)
linear_pred_bonds1 = torch.nn.Linear(args.emb_dim, 4).to(device)
linear_pred_atoms2 = torch.nn.Linear(args.emb_dim, 512).to(device)
linear_pred_bonds2 = torch.nn.Linear(args.emb_dim, 4).to(device)
model_list = [model, linear_pred_atoms1, linear_pred_bonds1, linear_pred_atoms2, linear_pred_bonds2]
#set up optimizers
optimizer_model = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.decay)
optimizer_linear_pred_atoms1 = optim.Adam(linear_pred_atoms1.parameters(), lr=args.lr, weight_decay=args.decay)
optimizer_linear_pred_bonds1 = optim.Adam(linear_pred_bonds1.parameters(), lr=args.lr, weight_decay=args.decay)
optimizer_linear_pred_atoms2 = optim.Adam(linear_pred_atoms2.parameters(), lr=args.lr, weight_decay=args.decay)
optimizer_linear_pred_bonds2 = optim.Adam(linear_pred_bonds2.parameters(), lr=args.lr, weight_decay=args.decay)
optimizer_list = [optimizer_model, optimizer_linear_pred_atoms1, optimizer_linear_pred_bonds1, optimizer_linear_pred_atoms2, optimizer_linear_pred_bonds2]
train_acc_list = []
train_loss_list = []
for epoch in range(1, args.epochs+1):
print("====epoch " + str(epoch))
train_loss, train_acc_atom, train_acc_bond = train(args, epoch, model_list, tokenizer, dataset, optimizer_list, device)
print(train_loss, train_acc_atom, train_acc_bond)
train_loss_list.append(train_loss)
train_acc_list.append(train_acc_atom)
df = pd.DataFrame({'train_acc':train_acc_list,'train_loss':train_loss_list})
df.to_csv('./logs/logs.csv')
if not args.output_model_file == "":
torch.save(model.gnn.state_dict(), args.output_model_file + f"Mole-BERT.pth")
if __name__ == "__main__":
main()