-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.R
1883 lines (1612 loc) · 69.7 KB
/
functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#
Setup = function(){
# this code bombs the shinyapps.io deploy, so commenting out and relying on package prefixes to guide install zoo::, psych::
# extra.packages.required = c('zoo','psych') # zoo for MAR(), NP(); psych for geometric.mean
#
# # install packages if needed
# for (p in extra.packages.required){
# if (!suppressWarnings(library(p, character.only = TRUE, logical.return = TRUE))){
# cat(sprintf('\n\nInstalling %s...\n', p))
# install.packages(p)
# require(p, character.only = TRUE)
# }
# }
Change 2
# csv comparison function, made global
## step is somehting else....
csv_compare <<- function(o, step, prefix=sprintf('temp/%s_MAR', basename(getwd()))){
dir_temp = basename(dirname(prefix))
if (!file.exists(dir_temp)) dir.create(dir_temp, recursive = TRUE)
csv = sprintf('%s_%s_B.csv', prefix, step)
if (!file.exists(csv)){
cat(sprintf('DEBUG: writing %s.\n', csv))
write.csv(o, csv, row.names = FALSE, na='')
}
x = read.csv(csv, check.names = FALSE)
# custom modifications
if (step=="1-rky"){x = x %>% arrange(rgn_id, species)}
if (step=="2-rky-smooth"){x = x %>% arrange(rgn_id, species)}
if (step=='3-m-melt'){ x$year = factor(x$year, levels=levels(o$year))
x = x %>%
arrange(rgn_id, species)} # [1] "Component “year”: 'current' is not a factor"
if (step=="4-m-within"){x = x %>% arrange(rgn_id, species)}
if (step=="5-m-merge"){x = x %>% arrange(rgn_id, species, species_code)}
if (step=='7-ref95pct-quantile'){ x = setNames(as.numeric(x), '95%') }
eq = all.equal(o, x)
if (class(eq) == 'character'){
csv = sprintf('%s_%s_A.csv', prefix, step)
cat(sprintf('DEBUG: NOT EQUAL! writing %s.\n', csv))
print(eq)
write.csv(o, csv, row.names = FALSE, na='')
}
return(x)
}
}
Change 3
FIS = function(layers, status_year){
# layers used: fis_meancatch, fis_b_bmsy, fis_proparea_saup2rgn
# catch data
c = SelectLayersData(layers, layers='fis_meancatch', narrow = TRUE) %>%
select(
fao_saup_id = id_chr,
taxon_name_key = category,
year,
catch = val_num)
# separate out the region ids:
c$fao_id <- as.numeric(sapply(strsplit(as.character(c$fao_saup_id), "_"), function(x)x[1]))
c$saup_id <- as.numeric(sapply(strsplit(as.character(c$fao_saup_id), "_"), function(x)x[2]))
c$TaxonName <- sapply(strsplit(as.character(c$taxon_name_key), "_"), function(x)x[1])
c$TaxonKey <- as.numeric(sapply(strsplit(as.character(c$taxon_name_key), "_"), function(x)x[2]))
c$catch <- as.numeric(c$catch)
c$year <- as.numeric(as.character(c$year))
#Create Identifier for linking assessed stocks with country-level catches
c$stock_id <- paste(as.character(c$TaxonName),
as.character(c$fao_id), sep="_")
# b_bmsy data
b = SelectLayersData(layers, layer='fis_b_bmsy', narrow = TRUE) %>%
select(
fao_id = id_num,
TaxonName = category,
year,
bmsy = val_num)
# Identifier taxa/fao region:
b$stock_id <- paste(b$TaxonName, b$fao_id, sep="_")
b$bmsy <- as.numeric(b$bmsy)
b$fao_id <- as.numeric(as.character(b$fao_id))
b$year <- as.numeric(as.character(b$year))
# area data for saup to rgn conversion
a = layers$data[['fis_proparea_saup2rgn']] %>%
select(saup_id, rgn_id, prop_area)
a$prop_area <- as.numeric(a$prop_area)
a$saup_id <- as.numeric(as.character(a$saup_id))
a$rgn_id <- as.numeric(as.character(a$rgn_id))
# ------------------------------------------------------------------------
# STEP 1. Merge the species status data with catch data
# AssessedCAtches: only taxa with catch status data
# -----------------------------------------------------------------------
AssessedCatches <- join(b, c,
by = c("stock_id", "year"), type="inner")
# b,c by stock_id
# include only taxa with species-level data
AssessedCatches <- AssessedCatches[as.numeric(AssessedCatches$TaxonKey)>=600000, ]
AssessedCatches$penalty <- 1
# ------------------------------------------------------------------------
# STEP 2. Estimate status data for catch taxa without species status
# UnAssessedCatches: taxa with catch status data
# -----------------------------------------------------------------------
UnAssessedCatches <- c[!(c$year %in% AssessedCatches$year &
c$stock_id %in% AssessedCatches$stock_id), ]
# 2a. Join UnAssessedCatches data to the b_bmsy summaries for each FAO/Year
# Average status data for assessed stocks by FAO region for each year.
# This is used as the starting estimate for unassesed stocks
# Here, the Median b_bmsy was chosen for TaxonKey >= 600000
# and Min b_bmsy for TaxonKey < 600000
# *************NOTE *****************************
# Using the minimum B/BMSY score as an starting point
# for the estimate of B/BMSY for unassessed taxa not
# identified to species level is very conservative.
# This is a parameter that can be changed.
# ***********************************************
b_summary <- ddply(b, .(fao_id, year), summarize,
Medianb_bmsy=quantile(as.numeric(bmsy), probs=c(0.5)),
Minb_bmsy=min(as.numeric(bmsy)))
UnAssessedCatches <- join(UnAssessedCatches, b_summary, by = c("fao_id", "year"),
type="left", match="all")
# UnAssessedCatches <- UnAssessedCatches[!(is.na(UnAssessedCatches$Medianb_bmsy)), ] #added 8/21/2014 due to changes in b/bmsy data created NAs here
# ## Troubleshooting:
# head(UnAssessedCatches[is.na(UnAssessedCatches$Medianb_bmsy), ])
# tmp <- UnAssessedCatches[is.na(UnAssessedCatches$Medianb_bmsy), ]
# unique(tmp$fao_id)
# saups <- unique(tmp$saup_id)
# unique(tmp$stock_id)
# a[a$saup_id %in% saups,]
#
# ggplot(tmp, aes(x=year, y=catch, group=saup_id, color=saup_id)) +
# geom_point() +
# geom_line() +
# facet_wrap( ~ stock_id, ncol=9, scale="free")
#
# 2b. Create a penalty variable based on taxa level:
UnAssessedCatches$TaxonPenaltyCode <- substring(UnAssessedCatches$TaxonKey,1,1)
# 2c. Create a penalty table for taxa not identified to species level
# *************NOTE *****************************
# In some cases, it may make sense to alter the
# penalty for not identifying fisheries catch data to
# species level.
# ***********************************************
penaltyTable <- data.frame(TaxonPenaltyCode=1:6,
penalty=c(0.01, 0.25, 0.5, 0.8, 0.9, 1))
# 2d.Merge with data
UnAssessedCatches <- join(UnAssessedCatches, penaltyTable, by="TaxonPenaltyCode")
# ------------------------------------------------------------------------
# STEP 3. Calculate score for all taxa based on status (b/bmsy) and taxa
# -----------------------------------------------------------------------
# *************NOTE *****************************
# These values can be altered
# ***********************************************
alpha <- 0.5
beta <- 0.25
lowerBuffer <- 0.95
upperBuffer <- 1.05
## Function to calculate score for different scenarios:
score <- function(data, variable){
#data <- AssessedCatches
#variable <- "bmsy"
ifelse(data[ ,variable]*data[, "penalty"]<lowerBuffer,
data[ ,variable]*data[, "penalty"],
ifelse(data[ ,variable]*data[, "penalty"]>upperBuffer,
ifelse(1-alpha*(data[ ,variable]*data[, "penalty"]
-upperBuffer)>beta,
1-alpha*(data[ ,variable]*data[, "penalty"]-upperBuffer),beta),
1))
}
AssessedCatches$score <- score(data=AssessedCatches, variable="bmsy")
# Median is used to calculate score for species with Taxon 6 coding
UnAssessedCatchesT6 <- subset(UnAssessedCatches, penalty==1)
UnAssessedCatchesT6$score <- score(UnAssessedCatchesT6, "Medianb_bmsy")
UnAssessedCatches <- subset(UnAssessedCatches, penalty!=1)
UnAssessedCatches$score <- score(UnAssessedCatches, "Medianb_bmsy")
AllScores <- rbind(AssessedCatches[,c("TaxonName", "TaxonKey", "year", "fao_id", "saup_id", "catch","score")],
UnAssessedCatchesT6[,c("TaxonName", "TaxonKey", "year", "fao_id", "saup_id", "catch","score")],
UnAssessedCatches[,c("TaxonName", "TaxonKey", "year", "fao_id", "saup_id", "catch","score")])
# ------------------------------------------------------------------------
# STEP 4. Calculate status for each saup_id region
# -----------------------------------------------------------------------
# 4a. To calculate the weight (i.e, the relative catch of each stock per saup_id),
# the mean catch of taxon i is divided by the
# sum of mean catch of all species in region r, which is calculated as:
smc <- ddply(.data = AllScores, .(year, saup_id), summarize,
SumCatch = sum(catch))
AllScores<-join(AllScores,smc,by = c("year","saup_id"))
AllScores$wprop<-AllScores$catch/AllScores$SumCatch
# 4b. The "score" and "weight" values per taxon per SAUP region are used to
# calculate a geometric weighted mean across taxa for each saup_id region
geomMean <- ddply(.data = AllScores, .(saup_id, year), summarize, status_saup = prod(score^wprop))
# ------------------------------------------------------------------------
# STEP 5. Convert status from saup spatial scale to OHI spatial scale
# -----------------------------------------------------------------------
# In many cases the ohi reporting regions are comprised of multiple saup regions.
# To correct for this, the proportion of each saup area of the total area of the
# OHI region was calculated. This was used to calculate Status from the Status_saup.
# This type of adjustment is omitted if the data were collected at the same spatial
# scale as the collecting region.
# Join region names/ids to Geom data
geomMean <- join(a, geomMean, type="inner", by="saup_id") # merge km2 of shelf area with status results
# weighted mean scores
StatusData <- ddply(.data = geomMean, .(rgn_id, year), summarize, Status = sum(status_saup*prop_area))
# 2013 status is based on 2011 data (most recent data)
status = StatusData %>%
filter(year==status_year) %>%
mutate(
score = round(Status*100),
dimension = 'status') %>%
select(region_id=rgn_id, dimension, score)
# ------------------------------------------------------------------------
# STEP 6. Calculate trend
# -----------------------------------------------------------------------
trend = ddply(StatusData, .(rgn_id), function(x){
mdl = lm(Status ~ year, data=x)
data.frame(
score = round(coef(mdl)[['year']] * 5, 2),
dimension = 'trend')}) %>%
select(region_id=rgn_id, dimension, score)
# %>% semi_join(status, by = 'rgn_id')
# assemble dimensions
scores = rbind(status, trend) %>% mutate(goal='FIS')
return(scores)
}
MAR = function(layers, status_years){
# layers used: mar_harvest_tonnes, mar_harvest_species, mar_sustainability_score, mar_coastalpopn_inland25mi, mar_trend_years
harvest_tonnes = rename(
SelectLayersData(layers, layers='mar_harvest_tonnes', narrow = TRUE),
c('id_num'='rgn_id', 'category'='species_code', 'year'='year', 'val_num'='tonnes'))
harvest_species = rename(
SelectLayersData(layers, layers='mar_harvest_species', narrow = TRUE),
c('category'='species_code', 'val_chr'='species'))
sustainability_score = rename(
SelectLayersData(layers, layers='mar_sustainability_score', narrow = TRUE),
c('id_num'='rgn_id', 'category'='species', 'val_num'='sust_coeff'))
popn_inland25mi = rename(
SelectLayersData(layers, layers='mar_coastalpopn_inland25mi', narrow = TRUE),
c('id_num'='rgn_id', 'year'='year', 'val_num'='popsum'))
trend_years = rename(
SelectLayersData(layers, layers='mar_trend_years', narrow = TRUE),
c('id_num'='rgn_id', 'val_chr'='trend_yrs'))
rky = harvest_tonnes %>%
merge(harvest_species , all.x = TRUE, by = 'species_code') %>%
merge(sustainability_score, all.x = TRUE, by = c('rgn_id', 'species')) %>%
dcast(rgn_id + species + species_code + sust_coeff ~ year, value.var='tonnes', mean, na.rm = TRUE) %>%
arrange(rgn_id, species)
# x = csv_compare(rky, '1-rky')
# smooth each species-country time-series using a running mean with 4-year window, excluding NAs from the 4-year mean calculation
# TODO: simplify below with dplyr::group_by()
yrs_smooth <- names(rky)[!names(rky) %in% c('rgn_id','species','species_code','sust_coeff')]
rky_smooth = zoo::rollapply(t(rky[,yrs_smooth]), 4, mean, na.rm = TRUE, partial = TRUE)
rownames(rky_smooth) = as.character(yrs_smooth)
rky_smooth = t(rky_smooth)
rky = as.data.frame(cbind(rky[, c('rgn_id','species','species_code','sust_coeff')], rky_smooth)); head(rky)
# x = csv_compare(rky, '2-rky-smooth') # DEBUG
# melt
m = melt(rky,
id=c('rgn_id', 'species', 'species_code', 'sust_coeff'),
variable.name='year', value.name='sm_tonnes'); head(m)
# m <- m %>%
# arrange(rgn_id, species)
# x = csv_compare(m, '3-m-melt') # DEBUG
# "Component “year”: 'current' is not a factor"
# for each species-country-year, smooth mariculture harvest times the sustainability coefficient
m = within(m, {
sust_tonnes = sust_coeff * sm_tonnes
year = as.numeric(as.character(m$year))
})
# m <- m %>%
# arrange(rgn_id, species)
# x = csv_compare(m, '4-m-within') # DEBUG
# merge the MAR and coastal human population data
m = merge(m, popn_inland25mi, by = c('rgn_id','year'), all.x = TRUE)
# m <- m %>%
# arrange(rgn_id, species, species_code)
# m_a = csv_compare(m, '5-m-merge') # DEBUG
# must first aggregate all weighted timeseries per region, before dividing by total population
# ry = ddply(m, .(rgn_id, year, popsum), summarize,
# sust_tonnes_sum = sum(sust_tonnes),
# mar_pop = sum(sust_tonnes) / popsum[1]) # <-- PROBLEM using popsum[1] with ddply!!!
# aggregate all weighted timeseries per region, and divide by coastal human population
ry = m %>%
group_by(rgn_id, year) %>%
summarize(
sust_tonnes_sum = sum(sust_tonnes)) %>%
merge(
popn_inland25mi, by = c('rgn_id','year'), all.x = TRUE) %>%
mutate(
mar_pop = sust_tonnes_sum / popsum) %>%
select(rgn_id, year, popsum, sust_tonnes_sum, mar_pop)
# ry_b = csv_compare(ry, '6-ry-ddply') # RIGHT
# ry_a = ry
# eq = all.equal(ry_a, ry_b)
# if (class(eq) == 'character') browser()
# get reference quantile based on argument years
ref_95pct = quantile(subset(ry, year <= max(status_years), mar_pop, drop = TRUE), 0.95, na.rm = TRUE)
# x = csv_compare(ref_95pct, '7-ref95pct-quantile') # DEBUG
# identify reference rgn_id
ry_ref = ry %>%
filter(year <=max(status_years)) %>%
arrange(mar_pop) %>%
filter(mar_pop >= ref_95pct)
cat(sprintf('95th percentile rgn_id for MAR ref pt is: %s\n', ry_ref$rgn_id[1])) # rgn_id 25 = Thailand
ry = within(ry, {
status = ifelse(mar_pop / ref_95pct > 1,
1,
mar_pop / ref_95pct)})
status <- subset(ry, year == max(status_years), c('rgn_id', 'status'))
status$status <- round(status$status*100, 2)
# x = csv_compare(ry, '8-ry-within') # DEBUG
# get list where trend is only to be calculated up to second-to-last-year
# species where the last year of the time-series was 2010, and the same value was copied over to 2011
# i.e. it was gapfilled using the previous year
# get MAR trend
ry = merge(ry, trend_years, all.x = TRUE)
yr_max = max(status_years)
trend = ddply(ry, .(rgn_id), function(x){ # x = subset(ry, rgn_id==5)
yrs = ifelse(x$trend_yrs=='4_yr',
(yr_max-5):(yr_max-1), # 4_yr
(yr_max-5):(yr_max)) # 5_yr
y = subset(x, year %in% yrs & !is.na(status))
# added condition for aus repo since rgns 7 & 9 have no data
if (nrow(y) > 1){
trend = round(max(min(lm(status ~ year, data=y)$coefficients[['year']] * 5, 1), -1), 2)
} else {
trend = NA
}
return(data.frame(trend))
})
# return scores
scores = status %>%
select(region_id = rgn_id,
score = status) %>%
mutate(dimension='status') %>%
rbind(
trend %>%
select(region_id = rgn_id,
score = trend) %>%
mutate(dimension = 'trend')) %>%
mutate(goal='MAR')
return(scores)
# NOTE: some differences to www2013 are due to 4_yr species only previously getting trend calculated to 4 years (instead of 5)
}
FP = function(layers, scores){
# weights
w = rename(SelectLayersData(layers, layers='fp_wildcaught_weight', narrow = TRUE),
c('id_num'='region_id', 'val_num'='w_FIS')); head(w)
# scores
s = dcast(scores, region_id + dimension ~ goal, value.var='score', subset=.(goal %in% c('FIS','MAR') & !dimension %in% c('pressures','resilience'))); head(s)
# combine
d = merge(s, w)
d$w_MAR = 1 - d$w_FIS
d$score = apply(d[,c('FIS','MAR','w_FIS', 'w_MAR')], 1, function(x){ weighted.mean(x[1:2], x[3:4], na.rm = TRUE) })
d$goal = 'FP'
# return all scores
return(rbind(scores, d[,c('region_id','goal','dimension','score')]))
}
AO = function(layers,
year_max,
year_min=max(min(layers_data$year, na.rm = TRUE), year_max - 10),
Sustainability=1.0){
# cast data
layers_data = SelectLayersData(layers, targets='AO')
ry = rename(dcast(layers_data, id_num + year ~ layer, value.var='val_num',
subset = .(layer %in% c('ao_need'))),
c('id_num'='region_id', 'ao_need'='need')); head(ry); summary(ry)
r = na.omit(rename(dcast(layers_data, id_num ~ layer, value.var='val_num',
subset = .(layer %in% c('ao_access'))),
c('id_num'='region_id', 'ao_access'='access'))); head(r); summary(r)
ry = merge(ry, r); head(r); summary(r); dim(r)
# model
ry = within(ry,{
Du = (1.0 - need) * (1.0 - access)
statusData = ((1.0 - Du) * Sustainability)
})
# status
r.status <- ry %>%
filter(year==year_max) %>%
select(region_id, statusData) %>%
mutate(status=statusData*100)
summary(r.status); dim(r.status)
# trend
r.trend = ddply(subset(ry, year >= year_min), .(region_id), function(x)
{
if (length(na.omit(x$statusData))>1) {
# use only last valid 5 years worth of status data since year_min
d = data.frame(statusData=x$statusData, year=x$year)[tail(which(!is.na(x$statusData)), 5),]
trend = coef(lm(statusData ~ year, d))[['year']]*5
} else {
trend = NA
}
return(data.frame(trend=trend))
})
# return scores
scores = r.status %>%
select(region_id, score=status) %>%
mutate(dimension='status') %>%
rbind(
r.trend %>%
select(region_id, score=trend) %>%
mutate(dimension='trend')) %>%
mutate(goal='AO') # dlply(scores, .(dimension), summary)
return(scores)
}
NP <- function(scores, layers, year_max, debug = FALSE){
### Apr 2014: updated by @oharac to use dplyr, tidyr.
# TODO: add smoothing a la PLoS 2013 manuscript # ??? CCO: done? is this the NP data_prep smoothing?
### new code version - load combined harvest variables
r_cyanide = layers$data[['np_cyanide']]
r_blast = layers$data[['np_blast']]
hab_extent = layers$data[['hab_extent']]
### FIS status for fish oil exposure
FIS_status <- scores %>%
filter(goal == 'FIS' & dimension == 'status') %>%
select(rgn_id = region_id, score)
###########################################################.
### Here I define five main sub-functions. The main script that
### actually calls these functions is at the very end of the NP section.
### np_rebuild_harvest
### np_calc_exposure
### np_calc_risk
### np_calc_sustainability
### np_calc_scores
np_rebuild_harvest <- function(layers) {
### Reassembles NP harvest information from separate data layers:
### [rgn_name rgn_id product year tonnes tonnes_rel prod_weight]
#########################################.
## load data from layers dataframe
rgns <- layers$data[['rgn_labels']]
h_tonnes <- layers$data[['np_harvest_tonnes']]
h_tonnes_rel <- layers$data[['np_harvest_tonnes_relative']]
h_w <- layers$data[['np_harvest_product_weight']]
# merge harvest in tonnes and usd
np_harvest <- h_tonnes %>%
full_join(
h_tonnes_rel,
by=c('rgn_id', 'product', 'year')) %>%
left_join(
h_w %>%
select(rgn_id, product, prod_weight = weight),
by=c('rgn_id', 'product')) %>%
left_join(
rgns %>%
select(rgn_id, rgn_name=label),
by='rgn_id') %>%
select(
rgn_name, rgn_id, product, year,
tonnes, tonnes_rel, prod_weight) %>%
group_by(rgn_id, product)
return(np_harvest)
}
np_calc_exposure <- function(np_harvest, hab_extent, FIS_status) {
### calculates NP exposure based on habitats (for corals, seaweeds,
### ornamentals, shells, sponges) and FIS status scores (for fish oil).
### Returns the first input data frame with a new column for exposure:
### [rgn_id rgn_name product year tonnes tonnes_rel prod_weight exposure]
#########################################.
### Determine Habitat Areas for Exposure
### extract habitats used
hab_coral <- hab_extent %>%
filter(habitat == 'coral') %>%
select(rgn_id, km2)
hab_rocky <- hab_extent %>%
filter(habitat == 'rocky_reef') %>%
select(rgn_id, km2)
### area for products having single habitats for exposure
area_single_hab <- bind_rows(
# corals in coral reef
np_harvest %>%
filter(product == 'corals') %>%
left_join(
hab_coral %>%
filter(km2 > 0) %>%
select(rgn_id, km2), by = 'rgn_id'),
### seaweeds in rocky reef
np_harvest %>%
filter(product == 'seaweeds') %>%
left_join(
hab_rocky %>%
filter(km2 > 0) %>%
select(rgn_id, km2), by = 'rgn_id'))
### area for products in both coral and rocky reef habitats: shells, ornamentals, sponges
area_dual_hab <- np_harvest %>%
filter(product %in% c('shells', 'ornamentals','sponges')) %>%
left_join(
hab_coral %>%
filter(km2 > 0) %>%
select(rgn_id, coral_km2 = km2),
by = 'rgn_id') %>%
left_join(
hab_rocky %>%
filter(km2 > 0) %>%
select(rgn_id, rocky_km2 = km2),
by = 'rgn_id') %>%
rowwise() %>%
mutate(
km2 = sum(c(rocky_km2, coral_km2), na.rm = TRUE)) %>%
filter(km2 > 0)
### Determine Exposure
### exposure: combine areas, get tonnes / area, and rescale with log transform
np_exp <-
bind_rows(
area_single_hab,
area_dual_hab %>%
select(-rocky_km2, -coral_km2)) %>%
mutate(
expos_raw = ifelse(tonnes > 0 & km2 > 0, (tonnes / km2), 0)) %>%
group_by(product) %>%
mutate(
expos_prod_max = (1 - .35)*max(expos_raw, na.rm = TRUE)) %>%
### Reduced max exposure:
### .35 is the threshold for harvest peak used in status
ungroup() %>%
mutate(
exposure = (log(expos_raw + 1) / log(expos_prod_max + 1)),
exposure = ifelse(exposure > 1, 1, exposure)) %>%
select(-km2, -expos_raw, -expos_prod_max)
### clean up columns
### add exposure for countries with (habitat extent == NA)
np_exp <- np_exp %>%
group_by(product) %>%
mutate(mean_exp = mean(exposure, na.rm = TRUE)) %>%
mutate(exposure = ifelse(is.na(exposure), mean_exp, exposure)) %>%
select(-mean_exp) %>%
ungroup()
### add exposure for fish_oil
np_exp <- np_exp %>% bind_rows(
np_harvest %>%
filter(product=='fish_oil') %>%
left_join(
FIS_status %>%
mutate(exposure = score / 100) %>%
# mutate(exposure = ifelse(is.na(exposure), 0, exposure)) %>%
### ??? adding this ^^^ from below - now will filter only NAs in fish_oil exposure, not seaweeds and coral exposure
select(rgn_id, exposure),
by = 'rgn_id'))
# ??? CCO: This assigns exposure to zero for ANY product with NA (fish oil, seaweeds, corals)
# np_exp <- np_exp %>%
# mutate(exposure = ifelse(is.na(exposure), 0, exposure))
return(np_exp)
}
np_calc_risk <- function(np_exp, r_cyanide, r_blast) {
### calculates NP risk based on:
### ornamentals: risk = 1 if blast or cyanide fishing
### corals: risk = 1 for all cases
### shells, sponges: risk = 0 for all cases
### others: risk = NA?
### Returns a data frame of risk, by product, by region:
###
#########################################.
### Determine Risk
### risk for ornamentals set to 1 if blast or cyanide fishing present, based on Nature 2012 code
### despite Nature 2012 Suppl saying Risk for ornamental fish is set to the "relative intensity of cyanide fishing"
risk_orn <- r_cyanide %>%
filter(!is.na(score) & score > 0) %>%
select(rgn_id, cyanide = score) %>%
merge(
r_blast %>%
filter(!is.na(score) & score > 0) %>%
select(rgn_id, blast = score),
all = TRUE) %>%
mutate(ornamentals = 1)
### risk as binary
np_risk <-
### fixed risk: corals (1), sponges (0) and shells (0)
data.frame(
rgn_id = unique(np_harvest$rgn_id),
corals = 1,
sponges = 0,
shells = 0) %>%
### ornamentals
left_join(
risk_orn %>%
select(rgn_id, ornamentals),
by = 'rgn_id') %>%
mutate(
ornamentals = ifelse(is.na(ornamentals), 0, ornamentals)) %>%
gather(product, risk, -rgn_id)
return(np_risk)
}
np_calc_sustainability <- function(np_exp, np_risk) {
### calculates NP sustainability coefficient for each natural product, based
### on (1 - mean(c(exposure, risk))). Returns first input dataframe with
### new columns for sustainability coefficient, and sustainability-adjusted
### NP product_status:
### [rgn_id rgn_name product year prod_weight sustainability product_status]
#########################################.
### join Exposure (with harvest) and Risk
np_sust <- np_exp %>%
left_join(
np_risk,
by = c('rgn_id', 'product')) %>%
rowwise() %>%
mutate(sustainability = 1 - mean(c(exposure, risk), na.rm = TRUE))
### calculate rgn-product-year status
np_sust <- np_sust %>%
mutate(product_status = tonnes_rel * sustainability) %>%
filter(rgn_name != 'DISPUTED') %>%
select(-tonnes, -tonnes_rel, -risk, -exposure)
return(np_sust)
}
np_calc_scores <- function(np_sust, year_max) {
### Calculates NP status for all production years for each region, based
### upon weighted mean of all products produced.
### From this, reports the most recent year as the NP status.
### Calculates NP trend for each region, based upon slope of a linear
### model over the past six years inclusive (five one-year intervals).
### Returns data frame with status and trend by region:
### [goal dimension region_id score]
#########################################.
### Calculate status, trends
### aggregate across products to rgn-year status, weighting by usd_rel
np_status_all <- np_sust %>%
filter(!is.na(product_status) & !is.na(prod_weight)) %>%
### ??? CCO: guadeloupe & martinique have NA for ornamental prod_weight. Is this a gap-filling error?
select(rgn_name, rgn_id, year, product, product_status, prod_weight) %>%
group_by(rgn_id, year) %>%
summarize(status = weighted.mean(product_status, prod_weight)) %>%
filter(!is.na(status)) %>% # 1/0 produces NaN
ungroup()
# if (debug){
# ### write out data
# write.csv(np_risk, sprintf('temp/%s_NP_2-rgn-year-product_data.csv', basename(getwd())), row.names = FALSE, na='')
# write.csv(status_all, sprintf('temp/%s_NP_3-rgn-year_status.csv', basename(getwd())), row.names = FALSE, na='')
# }
### get current status
np_status_current <- np_status_all %>%
filter(year == year_max & !is.na(status)) %>%
mutate(
dimension = 'status',
score = round(status,4) * 100) %>%
select(rgn_id, dimension, score)
stopifnot(
min(np_status_current$score, na.rm = TRUE) >= 0,
max(np_status_current$score, na.rm = TRUE) <= 100)
### trend based on 5 intervals (6 years of data)
np_trend <- np_status_all %>%
filter(year <= year_max & year > (year_max - 5) & !is.na(status)) %>%
group_by(rgn_id) %>%
do(mdl = lm(status ~ year, data=.)) %>%
summarize(
rgn_id = rgn_id,
dimension = 'trend',
score = max(-1, min(1, coef(mdl)[['year']] * 5)))
stopifnot(min(np_trend$score) >= -1, max(np_trend$score) <= 1)
### return scores
np_scores <- np_status_current %>%
full_join(np_trend) %>%
mutate(goal = 'NP') %>%
select(goal, dimension, region_id=rgn_id, score) %>%
arrange(goal, dimension, region_id)
return(np_scores)
}
##########################################.
### Natural Products main starts here:
np_harvest <- np_rebuild_harvest(layers)
np_exp <- np_calc_exposure(np_harvest, hab_extent, FIS_status)
np_risk <- np_calc_risk(np_exp, r_cyanide, r_blast)
np_sust <- np_calc_sustainability(np_exp, np_risk)
np_scores <- np_calc_scores(np_sust, year_max)
return(np_scores)
}
CS <- function(layers){
# layers
lyrs <- list('rk' = c('hab_health' = 'health',
'hab_extent' = 'extent',
'hab_trend' = 'trend'))
lyr_names <- sub('^\\w*\\.','', names(unlist(lyrs)))
# cast data
D <- SelectLayersData(layers, layers=lyr_names)
rk <- rename(dcast(D, id_num + category ~ layer, value.var='val_num', subset = .(layer %in% names(lyrs[['rk']]))),
c('id_num'='region_id', 'category'='habitat', lyrs[['rk']]))
# limit to CS habitats
rk <- subset(rk, habitat %in% c('mangrove','saltmarsh','seagrass'))
# assign extent of 0 as NA
rk$extent[rk$extent==0] <- NA
# status
r.status <- ddply(na.omit(rk[,c('region_id','habitat','extent','health')]), .(region_id), summarize,
goal = 'CS',
dimension = 'status',
score = min(1, sum(extent * health) / sum(extent)) * 100)
# trend
r.trend <- ddply(na.omit(rk[,c('region_id','habitat','extent','trend')]), .(region_id), summarize,
goal = 'CS',
dimension = 'trend',
score = sum(extent * trend) / sum(extent) )
# return scores
scores <- cbind(rbind(r.status, r.trend))
return(scores)
}
CP <- function(layers){
# sum mangrove_offshore1km + mangrove_inland1km = mangrove to match with extent and trend
m <- layers$data[['hab_extent']] %>%
filter(habitat %in% c('mangrove_inland1km','mangrove_offshore1km')) %>%
select(rgn_id, habitat, km2)
if (nrow(m) > 0){
m <- m %>%
group_by(rgn_id) %>%
summarize(km2 = sum(km2, na.rm = TRUE)) %>%
mutate(habitat='mangrove') %>%
ungroup()
}
# join layer data
d <-
join_all(
list(
layers$data[['hab_health']] %>%
select(rgn_id, habitat, health),
layers$data[['hab_trend']] %>%
select(rgn_id, habitat, trend),
# for habitat extent
rbind_list(
# do not use all mangrove
layers$data[['hab_extent']] %>%
filter(!habitat %in% c('mangrove','mangrove_inland1km','mangrove_offshore1km')) %>%
select(rgn_id, habitat, km2),
# just use inland1km and offshore1km
m)),
by = c('rgn_id','habitat'), type='full') %>%
select(rgn_id, habitat, km2, health, trend)
# limit to CP habitats and add rank
habitat.rank <- c('coral' = 4,
'mangrove' = 4,
'saltmarsh' = 3,
'seagrass' = 1,
'seaice_shoreline' = 4)
d <- d %>%
filter(habitat %in% names(habitat.rank)) %>%
mutate(
rank = habitat.rank[habitat],
extent = ifelse(km2==0, NA, km2))
if (nrow(d) > 0){
# status
scores_CP <- d %>%
filter(!is.na(rank) & !is.na(health) & !is.na(extent)) %>%
group_by(rgn_id) %>%
summarize(
score = pmin(1, sum(rank * health * extent) / (sum(extent) * max(rank)) ) * 100,
dimension = 'status')
# trend
d_trend <- d %>%
filter(!is.na(rank) & !is.na(trend) & !is.na(extent))
if (nrow(d_trend) > 0 ){
scores_CP <- rbind_list(
scores_CP,
d_trend %>%
group_by(rgn_id) %>%
summarize(
score = sum(rank * trend * extent) / (sum(extent)* max(rank)),
dimension = 'trend'))
}
scores_CP <- scores_CP %>%
mutate(
goal = 'CP') %>%
select(region_id=rgn_id, goal, dimension, score)
} else {
scores_CP <- data.frame(
goal = character(0),
dimension = character(0),
region_id = integer(0),
score = numeric())
}
# return scores
return(scores_CP)
}
TR = function(layers, year_max, debug = FALSE, pct_ref=90){
# formula:
# E = Ed / (L - (L*U))
# Sr = (S-1)/5
# Xtr = E * Sr
#
# Ed = Direct employment in tourism (tr_jobs_tourism): ** this has not been gapfilled. We thought it would make more sense to do at the status level.
# L = Total labor force (tr_jobs_total)
# U = Unemployment (tr_unemployment) 2013: max(year)=2011; 2012: max(year)=2010
# so E is tourism / employed
# S = Sustainability index (tr_sustainability)
#
# based on model/GL-NCEAS-TR_v2013a: TRgapfill.R, TRcalc.R...
# spatial gapfill simply avg, not weighted by total jobs or country population?
# scenario='eez2013'; year_max = c(eez2012=2010, eez2013=2011, eez2014=2012)[scenario]; setwd(sprintf('~/github/ohi-global/%s', scenario))
# get regions
rgns = layers$data[[conf$config$layer_region_labels]] %>%
select(rgn_id, rgn_label = label)
# merge layers and calculate score
d = layers$data[['tr_jobs_tourism']] %>%
select(rgn_id, year, Ed=count) %>%
arrange(rgn_id, year) %>%
merge(
layers$data[['tr_jobs_total']] %>%
select(rgn_id, year, L=count),
by = c('rgn_id','year'), all = TRUE) %>%
merge(
layers$data[['tr_unemployment']] %>%
select(rgn_id, year, U=percent) %>%
mutate(U = U/100),
by = c('rgn_id','year'), all = TRUE) %>%
merge(
layers$data[['tr_sustainability']] %>%
select(rgn_id, S_score=score),
by = c('rgn_id'), all = TRUE) %>%
mutate(
E = Ed / (L - (L * U)),
S = (S_score - 1) / 5,
Xtr = E * S ) %>%
merge(rgns, by = 'rgn_id') %>%
select(rgn_id, rgn_label, year, Ed, L, U, S, E, Xtr)
# feed NA for subcountry regions without sufficient data (vs global analysis)
if (conf$config$layer_region_labels!='rgn_global' & sum(!is.na(d$Xtr))==0) {
scores_TR = rbind_list(
rgns %>%
select(region_id = rgn_id) %>%
mutate(
goal = 'TR',
dimension = 'status',
score = NA),
rgns %>%
select(region_id = rgn_id) %>%
mutate(
goal = 'TR',
dimension = 'trend',
score = NA))
return(scores_TR)
}
# if (debug){
# # compare with pre-gapfilled data
# if (!file.exists('temp')) dir.create('temp', recursive = TRUE)
#
# # cast to wide format (rows:rgn, cols:year, vals: Xtr) similar to original
# d_c = d %>%
# filter(year %in% (year_max-5):year_max) %>%
# dcast(rgn_id ~ year, value.var='Xtr')
# write.csv(d_c, sprintf('temp/%s_TR_0-pregap_wide.csv', basename(getwd())), row.names = FALSE, na='')
#
# o = read.csv(file.path(dir_neptune_data, '/model/GL-NCEAS-TR_v2013a/raw/TR_status_pregap_Sept23.csv'), na.strings='') %>%
# melt(id='rgn_id', variable.name='year', value.name='Xtr_o') %>%
# mutate(year = as.integer(sub('x_TR_','', year, fixed = TRUE))) %>%
# arrange(rgn_id, year)
#
# vs = o %>%
# merge(
# expand.grid(list(
# rgn_id = rgns$rgn_id,
# year = 2006:2011)),
# by = c('rgn_id', 'year'), all = TRUE) %>%
# merge(d, by = c('rgn_id','year')) %>%
# mutate(Xtr_dif = Xtr - Xtr_o) %>%
# select(rgn_id, rgn_label, year, Xtr_o, Xtr, Xtr_dif, E, Ed, L, U, S) %>%
# arrange(rgn_id, year)
# write.csv(vs, sprintf('temp/%s_TR_0-pregap-vs_details.csv', basename(getwd())), row.names = FALSE, na='')
#
# vs_rgn = vs %>%
# group_by(rgn_id) %>%
# summarize(
# n_notna_o = sum(!is.na(Xtr_o)),
# n_notna = sum(!is.na(Xtr)),
# dif_avg = mean(Xtr, na.rm = TRUE) - mean(Xtr_o, na.rm = TRUE),
# Xtr_2011_o = last(Xtr_o),
# Xtr_2011 = last(Xtr),
# dif_2011 = Xtr_2011 - Xtr_2011_o) %>%
# filter(n_notna_o !=0 | n_notna!=0) %>%
# arrange(desc(abs(dif_2011)), Xtr_2011, Xtr_2011_o)
# write.csv(vs_rgn, sprintf('temp/%s_TR_0-pregap-vs_summary.csv', basename(getwd())), row.names = FALSE, na='')
# }