Skip to content

Latest commit

 

History

History
133 lines (91 loc) · 9.94 KB

File metadata and controls

133 lines (91 loc) · 9.94 KB

BMI 5311: Foundations of Biomedical Information Sciences II

This repository contains details about the bioinformatics project performed using StringDB, Cytoscape, and ImmuneCellAI as part of the BMI 5311: Foundations of Biomedical Information Sciences II course. The study, titled "Identification of immunomodulatory hub genes and cell signatures in mouse lungs exposed to cigarette smoke: An integrated bioinformatic analysis using StringDB, Cytoscape, and ImmuneCellAI", analyzed the temporal variations in gene expression in mouse lungs subjected to different durations of CS exposure, ranging from one day to nine months, focusing on differentially expressed genes (DEGs), pathway enrichment, and immune-related hub gene identification using a publicly available Bulk RNA sequencing dataset obtained from NCBI GEO.


Identification of immunomodulatory hub genes and cell signatures in mouse lungs exposed to cigarette smoke: An integrated bioinformatic analysis using StringDB, Cytoscape, and ImmuneCellAI

Project Overview

1. Data Retrieval

The mouse Bulk RNA sequencing dataset with the accession ID GSE76205 was accessed through the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO).

  • Raw and normalized count data wer retrieved using the NIH LINCS tool GREIN:GEO RNA-seq Experiments Interactive Navigator.

  • Sample groups and sizes:

    • At day one, there were five samples from the control group and four from the Cigarette smoke (CS)-exposed group.
    • At seven days, both control and CS-exposed groups had five samples each.
    • For the one-month and three-month intervals, the sample sizes remained consistent at five for each group.
    • The control group comprised four samples at six and nine months, while the CS-exposed group included five.

2. Differential Expression Analysis

  • Tools used: DESeq2 R package for differential expression analysis and EnhancedVolcano R package for data visualization.

    1. 1 day CS-exposed vs. 1 day Control
    2. 7 day CS-exposed vs. 7 day Control
    3. 1 month CS-exposed vs. 1 month Control
    4. 3 month CS-exposed vs. 3 month Control
    5. 6 month CS-exposed vs. 6 month Control
    6. 9 month CS-exposed vs. 9 month Control
  • Criteria for Differentially Expressed Genes (DEGs):

    • False Discovery Rate (FDR) ≤ 0.05
    • |Fold Change| > 1.5
  • R scripts can be found in this folder.

Figures:

3. Functional Enrichment Analysis

  • Tools used:

    • Metascape was used for comparative analysis across experimental timepoints.
    • GO Biological Process (BP), Cellular Compartment (CC), and Molecular Function (MF) and KEGG pathway enrichments.
  • Key Parameters for Enrichment Significance:

    • Minimum gene overlap = 3
    • Enrichment p-value cutoff = 0.05
    • Minimum enrichment factor = 1.5

Figures:


4. Network Analysis and Hub Gene Identification

  • Tools used:
    • StringDB version 12 for protein-protein interaction (PPI) network visualization.
    • Cytoscape for network visualization and hub gene analysis.
      • Maximal clique centrality (MCC) algorithm from the cytoHubba plugin was utilized to determine the top ten hub genes in each PPI.

Figures:


5. ImmuneCellAI analysis

  • Tools used:

    • ImmuneCellAI-mouse to determine immune cell types from gene expression data.
    • Input data were derived from normalized gene expression counts obtained via GREIN.
  • Statistical Evaluation

    • Tool used: GraphPad Prism version 10.4
    • Analysis conducted:
      • Temporal dynamics of immune cell infiltration in CS-exposed mouse lungs.
      • A two-way analysis of variance (ANOVA) test, followed by a post-hoc Tukey multiple comparison test.

Figures:


Citation

If you use the tools or dataset mentioned in this repository in your research, please cite the following references:

  • Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics 2000 25:1, 25(1), 25–29. https://doi.org/10.1038/75556

  • Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C. L., Serova, N., Davis, S., & Soboleva, A. (2013). NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Research, 41(D1), D991–D995. https://doi.org/10.1093/NAR/GKS1193

  • Blighe K, Rana S, Lewis M (2024). EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. R package version 1.24.0, https://github.com/kevinblighe/EnhancedVolcano

  • Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., & Lin, C. Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8(4), 1–7. https://doi.org/10.1186/1752-0509-8-S4-S11/TABLES/4

  • Kanehisa, M. (2019). Toward understanding the origin and evolution of cellular organisms. Protein Science, 28(11), 1947–1951. https://doi.org/10.1002/PRO.3715

  • Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., & Ishiguro-Watanabe, M. (2023). KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Research, 51(D1), D587–D592. https://doi.org/10.1093/NAR/GKAC963

  • Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 28(1), 27–30. https://doi.org/10.1093/NAR/28.1.27

  • Li, C., & Xu, J. (2019). Feature selection with the Fisher score followed by the Maximal Clique Centrality algorithm can accurately identify the hub genes of hepatocellular carcinoma. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-53471-0

  • Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 1–21. https://doi.org/10.1186/S13059-014-0550-8/FIGURES/9

  • Mahi, N. Al, Najafabadi, M. F., Pilarczyk, M., Kouril, M., & Medvedovic, M. (2019). GREIN: An Interactive Web Platform for Re-analyzing GEO RNA-seq Data. Scientific Reports, 9(1). https://doi.org/10.1038/S41598-019-43935-8

  • Miao, Y. R., Xia, M., Luo, M., Luo, T., Yang, M., & Guo, A. Y. (2022). ImmuCellAI-mouse: a tool for comprehensive prediction of mouse immune cell abundance and immune microenvironment depiction. Bioinformatics, 38(3), 785–791. https://doi.org/10.1093/BIOINFORMATICS/BTAB711

  • Miller, M. A., Danhorn, T., Cruickshank-Quinn, C. I., Leach, S. M., Jacobson, S., Strand, M. J., Reisdorph, N. A., Bowler, R. P., Petrache, I., & Kechris, K. (2017). Gene and metabolite time-course response to cigarette smoking in mouse lung and plasma. PLoS ONE, 12(6), e0178281. https://doi.org/10.1371/JOURNAL.PONE.0178281

  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/GR.1239303

  • Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A. L., Fang, T., Doncheva, N. T., Pyysalo, S., Bork, P., Jensen, L. J., & Von Mering, C. (2023). The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51(D1), D638–D646. https://doi.org/10.1093/NAR/GKAC1000

  • Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., Benner, C., & Chanda, S. K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications 2019 10:1, 10(1), 1–10. https://doi.org/10.1038/s41467-019-09234-6


For questions or issues, please contact the repository maintainer. Refer to the final course paper for detailed information and results.

This repository is solely for educational purposes and serves as a backup for my graduate school assignments related to the BMI 5311: Foundations of Biomedical Information Sciences II course at McWilliams School of Biomedical Informatics at UTHealth Houston.