-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_cmu.py
336 lines (281 loc) · 13.5 KB
/
main_cmu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import argparse
import torch
from dataset.dataloader import CMU_Motion3D
from model.model import AuxFormer
from torch import nn, optim
import json
import time
import numpy as np
import matplotlib.pyplot as plt
import math
import random
import yaml
import os
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def lr_decay(optimizer, lr_now, gamma):
lr_new = lr_now * gamma
for param_group in optimizer.param_groups:
param_group['lr'] = lr_new
return lr_new
def main():
if args.seed >= 0:
seed = args.seed
setup_seed(seed)
else:
seed = random.randint(0,1000)
setup_seed(seed)
print('The seed is :',seed)
past_length = args.past_length
future_length = args.future_length
if args.debug:
dataset_train = CMU_Motion3D(actions='walking', input_n=args.past_length, output_n=args.future_length, split=0, scale=args.scale,downsample=args.downsample)
else:
dataset_train = CMU_Motion3D(actions='all', input_n=args.past_length, output_n=args.future_length, split=0, scale=args.scale,downsample=args.downsample)
loader_train = torch.utils.data.DataLoader(dataset_train, batch_size=args.batch_size, shuffle=True, drop_last=False,
num_workers=8)
acts = ["basketball", "basketball_signal", "directing_traffic", "jumping", "running", "soccer", "walking",
"washwindow"]
loaders_test = {}
for act in acts:
dataset_test = CMU_Motion3D(actions=act, input_n=args.past_length, output_n=args.future_length, split=1, scale=args.scale,dim_used = dataset_train.dim_used,downsample=args.downsample)
loaders_test[act] = torch.utils.data.DataLoader(dataset_test, batch_size=args.batch_size, shuffle=False, drop_last=False,
num_workers=8)
dim_used = dataset_train.dim_used
model = AuxFormer(in_dim=2,
h_dim=args.nf,
past_timestep=args.past_length,
future_timestep=args.future_length,
mask_ratio=args.mask_ratio,
decoder_dim=args.decoder_dim,
num_heads=8,
encoder_depth=args.encoder_depth,
decoder_depth=args.decoder_depth,
decoder_dim_per_head=args.dim_per_head,
same_head=args.same_head,
range_mask_ratio=args.range_mask_ratio,
mlp_head=args.mlp_head,
mask_past=args.mask_past,
mask_range=args.mask_range,
multi_output=args.multi_output,
decoder_masking=args.decoder_masking,
pred_all=args.pred_all,
mlp_dim=args.mlp_dim,
dim_per_head=args.dim_per_head,
noise_dev=args.noise_dev,
part_noise=args.part_noise,
denoise_mode=args.denoise_mode,
part_noise_ratio=args.part_noise_ratio,
add_joint_token=args.add_joint_token,
n_agent=25,
concat_vel=args.concat_vel,
concat_acc=args.concat_acc,
only_recons_past=args.only_recons_past,
add_residual=args.add_residual,
denoise=args.denoise,
regular_masking=args.regular_masking,
multi_same_head=args.multi_same_head,
range_noise_dev=args.range_noise_dev
)
model = model.cuda()
# def get_parameter_number(model):
# total_num = sum(p.numel() for p in model.parameters())
# trainable_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
# return {'Total': total_num, 'Trainable': trainable_num}
# print(get_parameter_number(model))
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
loss_mse = nn.MSELoss()
results = {'epochs': [], 'losess': []}
best_test_loss = 1e8
best_ade = 1e8
best_epoch = 0
lr_now = args.lr
for epoch in range(0, args.epochs):
if args.apply_decay:
if epoch % args.epoch_decay == 0 and epoch > 0:
lr_now = lr_decay(optimizer, lr_now, args.lr_gamma)
train(model, optimizer, epoch, loader_train, dim_used)
if epoch % args.test_interval == 0:
# for act in acts:
# check_equivariant(model, optimizer, epoch, (act, loaders_test[act]), dim_used, backprop=False)
if args.future_length == 25 or args.future_length == 13:
avg_mpjpe = np.zeros((6))
elif args.future_length == 15:
avg_mpjpe = np.zeros((2))
else:
avg_mpjpe = np.zeros((4))
for act in acts:
mpjpe = test(model, optimizer, epoch, (act, loaders_test[act]), dim_used, backprop=False)
avg_mpjpe += mpjpe
avg_mpjpe = avg_mpjpe / len(acts)
print('avg mpjpe:',avg_mpjpe)
avg_avg_mpjpe = np.mean(avg_mpjpe[-1:])
if avg_avg_mpjpe < best_test_loss:
best_test_loss = avg_avg_mpjpe
best_all_test_loss = avg_mpjpe
best_epoch = epoch
state = {'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()}
if args.model_save_name == 'default':
if args.future_length == 25 or args.future_length == 13:
file_path = os.path.join(args.model_save_dir, 'cmu_ckpt_long_best.pth.tar')
else:
file_path = os.path.join(args.model_save_dir, 'cmu_ckpt_best.pth.tar')
else:
if args.future_length == 25 or args.future_length == 13:
file_path = os.path.join(args.model_save_dir, args.model_save_name+'_cmu_ckpt_long_best.pth.tar')
else:
file_path = os.path.join(args.model_save_dir, args.model_save_name+'_cmu_ckpt_best.pth.tar')
torch.save(state, file_path)
state = {'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()}
if args.model_save_name == 'default':
if args.future_length == 25 or args.future_length == 13:
file_path = os.path.join(args.model_save_dir, 'cmu_ckpt_long_'+str(epoch)+'.pth.tar')
else:
file_path = os.path.join(args.model_save_dir, 'cmu_ckpt_'+str(epoch)+'.pth.tar')
else:
if args.future_length == 25 or args.future_length == 13:
file_path = os.path.join(args.model_save_dir, args.model_save_name+'_cmu_ckpt_long_'+str(epoch)+'.pth.tar')
else:
file_path = os.path.join(args.model_save_dir, args.model_save_name+'_cmu_ckpt_'+str(epoch)+'.pth.tar')
torch.save(state, file_path)
print("Best Test Loss: %.5f \t Best epoch %d" % (best_test_loss, best_epoch))
print("Best AVG loss:",best_all_test_loss)
print('The seed is :',seed)
return
def train(model, optimizer, epoch, loader, dim_used=[], backprop=True):
if backprop:
model.train()
else:
model.eval()
res = {'epoch': epoch, 'loss': 0, 'counter': 0}
for batch_idx, data in enumerate(loader):
batch_size, n_nodes, length, _ = data[0].size()
data = [d.to(device) for d in data]
loc, vel, loc_end, _, item = data
loc_start = loc[:,:,-1:]
optimizer.zero_grad()
if args.time_exp:
torch.cuda.synchronize()
t1 = time.time()
all_traj = torch.cat([loc,loc_end],dim=2)
loc_pred,mask_pred,mask_gt,denoised_pred, mask = model(all_traj)
if args.weighted_loss:
weight = np.arange(1,args.max_weight,((args.max_weight-1)/args.future_length))
weight = args.future_length / weight
weight = torch.from_numpy(weight).type_as(loc_end)
weight = weight[None,None]
else:
weight = 1
if args.multi_output:
loss = 0
for idx,item in enumerate(loc_pred):
loss += (torch.mean(weight*torch.norm(item-loc_end,dim=-1))/args.encoder_depth)
else:
loss = torch.mean(weight*torch.norm(loc_pred-loc_end,dim=-1))
loss += torch.sum(torch.norm(mask_pred-mask_gt,dim=-1,p=2))/torch.sum(mask)
if args.denoise_mode == 'all':
loss += torch.mean(torch.norm(denoised_pred-all_traj,dim=-1))
elif args.denoise_mode == 'past':
loss += torch.mean(torch.norm(denoised_pred-loc,dim=-1))
elif args.denoise_mode == 'future':
loss += torch.mean(torch.norm(denoised_pred-loc_end,dim=-1))
else:
raise ValueError("args.denoise_mode")
if backprop:
loss.backward()
optimizer.step()
res['loss'] += loss.item()*batch_size
res['counter'] += batch_size
print('%s epoch %d avg loss: %.5f' % ('train', epoch, res['loss'] / res['counter']))
return res['loss'] / res['counter']
def test(model, optimizer, epoch, act_loader,dim_used=[],backprop=False):
act, loader = act_loader[0], act_loader[1]
model.eval()
validate_reasoning = False
if validate_reasoning:
acc_list = [0]*args.n_layers
res = {'epoch': epoch, 'loss': 0, 'counter': 0}
output_n = args.future_length
if output_n == 25:
eval_frame = [1, 3, 7, 9, 13, 24]
elif output_n == 15:
eval_frame = [3, 14]
elif output_n == 10:
eval_frame = [1, 3, 7, 9]
elif output_n == 13:
eval_frame = [0,1,3,4,6,12]
t_3d = np.zeros(len(eval_frame))
with torch.no_grad():
for batch_idx, data in enumerate(loader):
batch_size, n_nodes, length, _ = data[0].size()
data = [d.to(device) for d in data]
loc, vel, loc_end, loc_end_ori, _ = data
loc_start = loc[:,:,-1:]
pred_length = loc_end.shape[2]
optimizer.zero_grad()
loc_end_fake = torch.zeros_like(loc_end)
all_traj = torch.cat([loc,loc_end_fake],dim=2)
loc_pred = model.predict(all_traj) #(B,N,T,3)
pred_3d = loc_end_ori.clone()
loc_pred = loc_pred.transpose(1,2)
loc_pred = loc_pred.contiguous().view(batch_size,loc_end.shape[2],n_nodes*3)
joint_to_ignore = np.array([16, 20, 29, 24, 27, 33, 36])
index_to_ignore = np.concatenate((joint_to_ignore * 3, joint_to_ignore * 3 + 1, joint_to_ignore * 3 + 2))
joint_equal = np.array([15, 15, 15, 23, 23, 32, 32])
index_to_equal = np.concatenate((joint_equal * 3, joint_equal * 3 + 1, joint_equal * 3 + 2))
pred_3d[:,:,dim_used] = loc_pred
pred_3d[:, :, index_to_ignore] = pred_3d[:, :, index_to_equal]
pred_p3d = pred_3d.contiguous().view(batch_size, pred_length, -1, 3) #[:, input_n:, :, :]
targ_p3d = loc_end_ori.contiguous().view(batch_size, pred_length, -1, 3) #[:, input_n:, :, :]
for k in np.arange(0, len(eval_frame)):
j = eval_frame[k]
t_3d[k] += torch.mean(torch.norm(targ_p3d[:, j, :, :].contiguous().view(-1, 3) - pred_p3d[:, j, :, :].contiguous().view(-1, 3), 2, 1)).item() * batch_size
res['counter'] += batch_size
t_3d *= args.scale
N = res['counter']
actname = "{0: <14} |".format(act)
if args.future_length == 25 or args.future_length == 13:
print('Act: {}, ErrT: {:.3f} {:.3f} {:.3f} {:.3f} {:.3f} {:.3f}, TestError {:.4f}'\
.format(actname,
float(t_3d[0])/N, float(t_3d[1])/N, float(t_3d[2])/N, float(t_3d[3])/N, float(t_3d[4])/N, float(t_3d[5])/N,
float(t_3d.mean())/N))
elif args.future_length == 15:
print('Act: {}, ErrT: {:.3f} {:.3f}, TestError {:.4f}'\
.format(actname,
float(t_3d[0])/N, float(t_3d[1])/N,
float(t_3d.mean())/N))
else:
print('Act: {}, ErrT: {:.3f} {:.3f} {:.3f} {:.3f}, TestError {:.4f}'\
.format(actname,
float(t_3d[0])/N, float(t_3d[1])/N, float(t_3d[2])/N, float(t_3d[3])/N,
float(t_3d.mean())/N))
return t_3d / N
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='VAE MNIST Example')
parser.add_argument('--no-cuda', action='store_true', default=False, help='enables CUDA training')
parser.add_argument('--seed', type=int, default=-1, metavar='S', help='random seed (default: -1)')
parser.add_argument("--debug",action='store_true')
parser.add_argument('--model_save_dir', type=str, default='ckpt', help='dir to save model')
parser.add_argument("--model_save_name",type=str,default="default")
parser.add_argument("--task",type=str,default="short")
args = parser.parse_args()
if args.task == 'short':
with open('cfg/cmu_short.yml', 'r') as f:
yml_arg = yaml.load(f)
else:
with open('cfg/cmu_long.yml', 'r') as f:
yml_arg = yaml.load(f)
parser.set_defaults(**yml_arg)
args = parser.parse_args()
args.cuda = True
device = torch.device("cuda" if args.cuda else "cpu")
print(args)
main()