-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontrastive.py
239 lines (193 loc) · 9.38 KB
/
contrastive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import sys
import copy
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import argparse
def knn(x, k):
inner = -2 * torch.matmul(x.transpose(2, 1), x)
xx = torch.sum(x ** 2, dim=1, keepdim=True)
pairwise_distance = -xx - inner - xx.transpose(2, 1)
idx = pairwise_distance.topk(k=k, dim=-1)[1] # (batch_size, num_points, k)
return idx
def get_graph_feature(x, k=20, idx=None):
batch_size = x.size(0)
num_points = x.size(2)
x = x.view(batch_size, -1, num_points)
if idx is None:
idx = knn(x, k=k) # (batch_size, num_points, k)
device = torch.device('cuda')
idx_base = torch.arange(0, batch_size, device=device).view(-1, 1, 1) * num_points
idx = idx + idx_base
idx = idx.view(-1)
_, num_dims, _ = x.size()
x = x.transpose(2,
1).contiguous() # (batch_size, num_points, num_dims) -> (batch_size*num_points, num_dims) # batch_size * num_points * k + range(0, batch_size*num_points)
feature = x.view(batch_size * num_points, -1)[idx, :]
feature = feature.view(batch_size, num_points, k, num_dims)
x = x.view(batch_size, num_points, 1, num_dims).repeat(1, 1, k, 1)
feature = torch.cat((feature - x, x), dim=3).permute(0, 3, 1, 2).contiguous()
return feature
class PointNet(nn.Module):
def __init__(self, args, output_channels=40):
super(PointNet, self).__init__()
self.args = args
self.conv1 = nn.Conv1d(3, 64, kernel_size=1, bias=False)
self.conv2 = nn.Conv1d(64, 64, kernel_size=1, bias=False)
self.conv3 = nn.Conv1d(64, 64, kernel_size=1, bias=False)
self.conv4 = nn.Conv1d(64, 128, kernel_size=1, bias=False)
self.conv5 = nn.Conv1d(128, args.emb_dims, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm1d(64)
self.bn2 = nn.BatchNorm1d(64)
self.bn3 = nn.BatchNorm1d(64)
self.bn4 = nn.BatchNorm1d(128)
self.bn5 = nn.BatchNorm1d(args.emb_dims)
self.linear1 = nn.Linear(args.emb_dims, 512, bias=False)
self.bn6 = nn.BatchNorm1d(512)
self.dp1 = nn.Dropout()
self.linear2 = nn.Linear(512, output_channels)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = F.relu(self.bn3(self.conv3(x)))
x = F.relu(self.bn4(self.conv4(x)))
x = F.relu(self.bn5(self.conv5(x)))
x = F.adaptive_max_pool1d(x, 1).squeeze()
return x
class DGCNN(nn.Module):
def __init__(self, args, output_channels=40):
super(DGCNN, self).__init__()
self.args = args
self.k = args.k
self.bn1 = nn.BatchNorm2d(64)
self.bn2 = nn.BatchNorm2d(64)
self.bn3 = nn.BatchNorm2d(128)
self.bn4 = nn.BatchNorm2d(256)
self.bn5 = nn.BatchNorm1d(args.emb_dims)
self.conv1 = nn.Sequential(nn.Conv2d(6, 64, kernel_size=1, bias=False),
self.bn1,
nn.LeakyReLU(negative_slope=0.2))
self.conv2 = nn.Sequential(nn.Conv2d(64 * 2, 64, kernel_size=1, bias=False),
self.bn2,
nn.LeakyReLU(negative_slope=0.2))
self.conv3 = nn.Sequential(nn.Conv2d(64 * 2, 128, kernel_size=1, bias=False),
self.bn3,
nn.LeakyReLU(negative_slope=0.2))
self.conv4 = nn.Sequential(nn.Conv2d(128 * 2, 256, kernel_size=1, bias=False),
self.bn4,
nn.LeakyReLU(negative_slope=0.2))
self.conv5 = nn.Sequential(nn.Conv1d(512, args.emb_dims, kernel_size=1, bias=False),
self.bn5,
nn.LeakyReLU(negative_slope=0.2))
self.linear1 = nn.Linear(args.emb_dims * 2, 512, bias=False)
self.bn6 = nn.BatchNorm1d(512)
self.dp1 = nn.Dropout(p=args.dropout)
self.linear2 = nn.Linear(512, 256)
self.bn7 = nn.BatchNorm1d(256)
self.dp2 = nn.Dropout(p=args.dropout)
self.linear3 = nn.Linear(256, output_channels)
def forward(self, x):
batch_size = x.size(0)
x = get_graph_feature(x, k=self.k)
x = self.conv1(x)
x1 = x.max(dim=-1, keepdim=False)[0]
x = get_graph_feature(x1, k=self.k)
x = self.conv2(x)
x2 = x.max(dim=-1, keepdim=False)[0]
x = get_graph_feature(x2, k=self.k)
x = self.conv3(x)
x3 = x.max(dim=-1, keepdim=False)[0]
x = get_graph_feature(x3, k=self.k)
x = self.conv4(x)
x4 = x.max(dim=-1, keepdim=False)[0]
x = torch.cat((x1, x2, x3, x4), dim=1)
x = self.conv5(x)
x1 = F.adaptive_max_pool1d(x, 1).view(batch_size, -1)
x2 = F.adaptive_avg_pool1d(x, 1).view(batch_size, -1)
x = torch.cat((x1, x2), 1)
return x
class MLP(nn.Module):
def __init__(self, input_size, hidden_size):
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, hidden_size)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
def triplet_loss(anchor, positive, negative, margin=1.0):
distance_positive = torch.norm(anchor - positive, p=2, dim=1) # 计算anchor和positive之间的欧氏距离
distance_negative = torch.norm(anchor - negative, p=2, dim=1) # 计算anchor和negative之间的欧氏距离
losses = torch.relu(distance_positive - distance_negative + margin) # Triplet loss的计算公式
return losses.mean() # 取平均值作为最终的损失
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Point Cloud Recognition')
parser.add_argument('--exp_name', type=str, default='exp', metavar='N',
help='Name of the experiment')
parser.add_argument('--model', type=str, default='dgcnn', metavar='N',
choices=['pointnet', 'dgcnn'],
help='Model to use, [pointnet, dgcnn]')
parser.add_argument('--dataset', type=str, default='modelnet40', metavar='N',
choices=['modelnet40'])
parser.add_argument('--batch_size', type=int, default=32, metavar='batch_size',
help='Size of batch)')
parser.add_argument('--test_batch_size', type=int, default=16, metavar='batch_size',
help='Size of batch)')
parser.add_argument('--epochs', type=int, default=250, metavar='N',
help='number of episode to train ')
parser.add_argument('--use_sgd', type=bool, default=True,
help='Use SGD')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate (default: 0.001, 0.1 if using sgd)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--no_cuda', type=bool, default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--eval', type=bool, default=False,
help='evaluate the model')
parser.add_argument('--num_points', type=int, default=1024,
help='num of points to use')
parser.add_argument('--dropout', type=float, default=0.5,
help='dropout rate')
parser.add_argument('--emb_dims', type=int, default=1024, metavar='N',
help='Dimension of embeddings')
parser.add_argument('--k', type=int, default=20, metavar='N',
help='Num of nearest neighbors to use')
parser.add_argument('--model_path', type=str, default='', metavar='N',
help='Pretrained model path')
args = parser.parse_args()
# 对比学习就是将两个点云输入一个特征特征提取器械,然后对经过特征提取器的特征做处理
# 这边有两个特征提取器,你都试试好了,PointNet应该快一些,DGCNN精度应该高一点
device = torch.device("cuda")
# 这里你两个都试试
model_opt = 'dgcnn'
if model_opt == 'pointnet':
model = PointNet(args).to(device)
elif model_opt == 'dgcnn':
model = DGCNN(args).to(device)
else:
raise Exception("Not implemented")
mlp = MLP(2048, 512).to(device)
# origin_xyz表示正常经过deformation得到的点云坐标
# deformation_xyz表示是你通过微调得到的smpl参数上完全一致的点云坐标
# randn_xyz就是负样本,你直接选择微调之前的那个人体,或者随机选择就行
origin_xyz = torch.randn([1,3,9999]).to(device)
deformation_xyz = torch.randn([1,3,9999]).to(device)
randn_xyz = torch.randn([1,3,9999]).to(device)
feature_origin = model(origin_xyz)
feature_deformation = model(deformation_xyz)
feature_randn = model(randn_xyz)
# pointnet的输出为[1024]
# dgcnn的输出为[1,2048]
feature_origin = mlp(feature_origin)
feature_deformation = mlp(feature_deformation)
feature_randn = mlp(feature_randn)
loss = triplet_loss(feature_origin,feature_deformation, feature_randn)
print('对比学习loss: ',loss)