-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
83 lines (65 loc) · 2.67 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import os
import xml.etree.ElementTree as ET
import cv2
import numpy as np
from tqdm import trange
from synset_mappings import *
import tensorflow as tf
def load_original_image(path):
return cv2.imread(path).astype(np.float32)
def load_vgg_image(path, model):
img = cv2.imread(path).astype(np.float32)
img = img[..., ::-1]
img = model.preprocess_input(img)
img = cv2.resize(img, (224, 224), interpolation=cv2.INTER_CUBIC)
return img
def load_image(path):
img = cv2.imread(path)
# Resize
return tf.image.resize(img, (224, 224), method=tf.image.ResizeMethod.BICUBIC)[:, :, ::-1]
def load_ground_truth(path):
root = ET.parse(path).getroot()
objects = root.findall("object")
ground_truths = []
for i in range(len(objects)):
xmin = int(objects[i].find("bndbox").findtext("xmin"))
ymin = int(objects[i].find("bndbox").findtext("ymin"))
xmax = int(objects[i].find("bndbox").findtext("xmax"))
ymax = int(objects[i].find("bndbox").findtext("ymax"))
cls = objects[i].findtext("name")
ground_truths.append((cls, {"xmin": xmin, "xmax": xmax, "ymin": ymin, "ymax": ymax}))
return ground_truths
def preprocess_and_save(
x_input_dir,
y_input_dir,
output_dir,
chunk_size=1000,
):
x_files = os.listdir(x_input_dir)
x_files.sort()
x_files = [x_input_dir + fn for fn in x_files]
y_files = os.listdir(y_input_dir)
y_files.sort()
y_files = [y_input_dir + fn for fn in y_files]
x_val = np.zeros((chunk_size, 224, 224, 3), dtype=np.float32)
y_val = np.zeros((chunk_size, 1000))
for i in trange(len(x_files) + 1):
if i % chunk_size == 0 and i != 0:
np.save("{}x_val_{}.npy".format(output_dir, i // chunk_size), x_val)
np.save("{}y_val_{}.npy".format(output_dir, i // chunk_size), y_val)
y_val = np.zeros((chunk_size, 1000))
if i == len(x_files):
break
# Load (as BGR)
img = load_vgg_image(x_files[i])
# Save (as RGB)
x_val[i % chunk_size] = img[..., ::-1] # img[:, :, ::-1]
# All classes for each image are the same so only has to set for one of the ground truths
gt = load_ground_truth(y_files[i])
class_name = gt[0][0]
y_val[i % chunk_size][name_to_index[class_name]["index"]] = 1
def load_chunk(directory, chunk_index, model):
x_val = np.load(directory + "x_val_" + str(chunk_index) + ".npy") # loaded as RGB
x_val = model.preprocess_input(x_val) # converted to BGR
y_val = np.load(directory + "y_val_" + str(chunk_index) + ".npy")
return x_val, y_val