diff --git a/fecon236/oc/optimize.py b/fecon236/oc/optimize.py index 60595e7..2f624f2 100644 --- a/fecon236/oc/optimize.py +++ b/fecon236/oc/optimize.py @@ -1,16 +1,12 @@ # Python Module for import Date : 2018-05-29 # vim: set fileencoding=utf-8 ff=unix tw=78 ai syn=python : per PEP 0263 -''' -_______________| optimize.py :: Convex optimization given noisy data. +"""Convex optimization given noisy data. -We smooth some of the rough edges among the "scipy.optimize" algorithms. Our -"optimize" algorithm first begins by a coarse grid search, then unconstrained +We smooth some of the rough edges among the `scipy.optimize` algorithms. Our +`optimize` algorithm first begins by a coarse grid search, then unconstrained Nelder-Mead simplex method, and finally the refined L-BFGS-B method which approximates a low-rank Hessian so that we can work in high (>250) dimensions. -USAGE: please see tests/test_optimize.py which also serves as a TUTORIAL for -optimization of loss functions, given data and model. - Our selected methods feature the following and their unification: Suitability: non-convex problem: GLOBAL optimizers: @@ -32,11 +28,10 @@ minimum, or how fast it will if it does. Suitability: WITH knowledge of the gradient: quasi-Newton methods: - BFGS (scipy.optimize.fmin_bfgs()), or - L-BFGS-B (scipy.optimize.fmin_l_bfgs_b()) - where the former has larger computational overhead. - Knowledge here means analytical representation. - BFGS abbreviates Broyden-Fletcher-Goldfarb-Shanno. + BFGS (scipy.optimize.fmin_bfgs()), or + L-BFGS-B (scipy.optimize.fmin_l_bfgs_b()) where the former has larger + computational overhead. Knowledge here means analytical representation. + BFGS abbreviates Broyden-Fletcher-Goldfarb-Shanno. Suitability: WITHOUT knowledge of the gradient: L-BFGS-B (scipy.optimize.fmin_l_bfgs_b()) @@ -45,19 +40,33 @@ if you have a specific strategy. General strategy: - For scipy.optimize.minimize(): + For `scipy.optimize.minimize`: http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html - a singe method must be selected. However, our optimize() is a sequence of - methods which starts from brute to refined, in above order. + a singe method must be selected. However, our `optimize` is a sequence + of methods which starts from brute to refined, in above order. + +Notes +----- +For LATEST version, see https://git.io/fecon236 + +Usage +----- +Please see `tests/test_optimize.py` which also serves as a TUTORIAL +for optimization of loss functions, given data and model. + +References +---------- -REFERENCES: - Mathematical optimization using scipy http://www.scipy-lectures.org/advanced/mathematical_optimization -CHANGE LOG For LATEST version, see https://git.io/fecon236 -2018-05-29 optimize.py, fecon236 fork. Pass flake8, fix imports. -2016-04-08 ys_optimize.py, fecon235 v5.18.0312, https://git.io/fecon235 -''' +Change Log +---------- + +* 2018-05-29 `optimize.py`, `fecon236` fork. Pass flake8, fix imports. +* 2016-04-08 `ys_optimize.py`, fecon235 v5.18.0312, https://git.io/fecon235 + +""" from __future__ import absolute_import, print_function, division @@ -80,13 +89,24 @@ def minBrute(fun, boundpairs, funarg=(), grids=20): - '''Minimization by brute force grid search. - fun is our function to minimize, given parameters for optimization. - boundpairs is a list of (min, max) pairs for fun parameters. - funarg is a tuple of supplemental arguments for fun. - grids are number of steps are taken in each direction. - ''' - # http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brute.html + """Minimization by brute force grid search. + + Parameters + ---------- + fun: function + Function to minimize, given parameters for optimization + boundpairs: list + List of (min, max) pairs for fun parameters + funarg: tuple + Supplemental arguments for fun + grids: int + Number of steps taken in each direction + + References + ---------- + http://docs.scipy.org/doc/scipy/reference/generated/ + scipy.optimize.brute.html + """ boundpairs = tuple(boundpairs) # boundpairs actually must be a tuple consisting of (min,max) tuples. if DISPLAY: @@ -103,14 +123,26 @@ def minBrute(fun, boundpairs, funarg=(), grids=20): def minNelder(fun, initial, funarg=()): - '''Nelder-Mead simplex algorithm. - fun is our function to minimize, given parameters for optimization. - initial parameter guesses must be an ndarray, i.e. np.array([...]) - funarg is a tuple of supplemental arguments for fun. - ''' - # http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin.html - # Nelder, J.A. and Mead, R. (1965), "A simplex method for function - # minimization", The Computer Journal, 7, pp. 308-313 + """Nelder-Mead simplex algorithm. + + Parameters + ---------- + fun: function + Function to minimize, given parameters for optimization + initial: numpy.ndarray + Initial parameter guesses + funarg: tuple + Supplemental arguments for fun + + References + ---------- + + * http://docs.scipy.org/doc/scipy/reference/generated/ + scipy.optimize.fmin.html + * Nelder, J.A. and Mead, R. (1965), "A simplex method for function + minimization", The Computer Journal, 7, pp. 308-313 + + """ if DISPLAY: print(" :: Display for minNelder() ... ") result = sop.fmin(func=fun, args=funarg, x0=initial, disp=DISPLAY) @@ -119,20 +151,33 @@ def minNelder(fun, initial, funarg=()): def minBroyden(fun, initial, funarg=(), boundpairs=None): - '''Broyden-Fletcher-Goldfarb-Shanno L-BFGS-B algorithm with box boundaries. - At each step an approximate low-rank Hessian is refined, - so this should work in high (>250) dimensions. - fun is our function to minimize, given parameters for optimization. - initial parameter guesses must be an ndarray, i.e. np.array([...]) - funarg is a tuple of supplemental arguments for fun. - boundpairs is an OPTIONAL list of (min, max) pairs for fun parameters, - where None can be used for either min or max to indicate no bound. - ''' - # http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_l_bfgs_b.html - # Ref: C. Zhu, R. H. Byrd, J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, - # FORTRAN routines for large scale bound constrained optimization (1997), - # ACM Transactions on Mathematical Software, 23, 4, pp. 550-560. - # scipy function is actually a Python wrapper around Fortran code. + """Broyden-Fletcher-Goldfarb-Shanno L-BFGS-B algorithm with box boundaries. + + At each step an approximate low-rank Hessian is refined, + so this should work in high (>250) dimensions. + + Parameters + ---------- + fun: function + Function to minimize, given parameters for optimization + initial: numpy.ndarray + Initial parameter guesses + funarg: tuple + Supplemental arguments for fun + boundpairs: list, optional + Pairs for fun parameters, where None can be used for either min or max + to indicate no bound + + References + ---------- + + * http://docs.scipy.org/doc/scipy/reference/generated/ + scipy.optimize.fmin_l_bfgs_b.html + * FORTRAN routines for large scale bound constrained optimization (1997), + ACM Transactions on Mathematical Software, 23, 4, pp. 550-560. + `scipy` function is actually a Python wrapper around Fortran code. + + """ if DISPLAY: print(" :: Display for minBroyden() ... ") result = sop.fmin_l_bfgs_b(func=fun, args=funarg, x0=initial, @@ -153,20 +198,32 @@ def minBroyden(fun, initial, funarg=(), boundpairs=None): def optimize(fun, initialpairs, funarg=(), grids=20): - '''Optimize by grid search, Nelder-Mead simplex, and L-BFGS-B methods. - First a broad global search, followed by coarse non-gradient method, - then refined quasi-Newton method by approximate low-rank Hessian. - fun is our function to minimize, given parameters for optimization. - funarg is a tuple of supplemental arguments for fun. - initialpairs is a list of (min, max) pairs for fun parameters. - grids are number of steps are taken in each direction. - However, here we are intentionally NOT CONSTRAINED by initialpairs. - ''' - # The argument initialpairs can be just our preliminary wild guess. - # minBrute will respect initialpairs as strict boundpairs using grids, - # however, better and better initial point estimates are passed - # along to other algorithms which will ignore any strict bounds - # if the minimization can be improved. + """Optimize by grid search, Nelder-Mead simplex, and L-BFGS-B methods. + + First a broad global search, followed by coarse non-gradient method, + then refined quasi-Newton method by approximate low-rank Hessian. + + Parameters + ---------- + fun: function + Function to minimize, given parameters for optimization + initialpairs: list + Initial (min, max) pairs for fun parameters + funarg: tuple + Supplemental arguments for fun + grids: int + Number of steps are taken in each direction. Defaults to 20 + + Notes + ----- + The argument `initialpairs` can be just our preliminary wild guess. + minBrute will respect `initialpairs` as strict boundpairs using grids, + however, better and better initial point estimates are passed + along to other algorithms which will ignore any strict bounds + if the minimization can be improved. + + However, here we are intentionally NOT CONSTRAINED by `initialpairs`. + """ brute = minBrute(fun=fun, funarg=funarg, boundpairs=initialpairs, grids=grids) if DISPLAY: