-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhold_ball.py
272 lines (245 loc) · 9.15 KB
/
hold_ball.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#!/usr/bin/env python
#coding=utf-8
'''
Brief : track deer for robot. Ver : V1.0
Author : Sanson Date : 2019/01/22
'''
from picamera.array import PiRGBArray
# 捕获’brg’格式的数据库
from picamera import PiCamera
from functools import partial
# functools模块用于高级函数:作用于或返回其他函数的函数,一般来说,任何可调用对象都可以作为这个模块的用途来处理。
# partial 函数的功能就是:把一个函数的某些参数给固定住,返回一个新的函数。
import cv2
import os
import time
import threading
# 多线程库
import numpy as np
import multiprocessing as mp
# 多进程库
from socket import *
# 用于通讯的库
import RobotApi as api
import sys
# 分辨率
resX = 450
resY = 250
# 定义颜色范围数组
lower_red = np.array([160, 40, 40])
upper_red = np.array([179, 255, 255])
lower_green = np.array([30, 100, 100])
upper_green = np.array([80, 255, 255])
lower_blue = np.array([100, 100, 100])
upper_blue = np.array([125, 255, 255])
lower_yellow = np.array([20, 30, 30])
upper_yellow = np.array([70, 255, 255])
lower_purple = np.array([125, 50, 50])
upper_purple = np.array([150, 255, 255])
center_x = 0
center_y = 0
radius = 0
hold_flag = 0
release_flag = 0
# 相机设定
camera = PiCamera()
camera.resolution = (resX, resY)
# 分辨率
camera.framerate = 30
# 帧率
#使用此作为输出
rawCapture = PiRGBArray(camera, size=(resX, resY))
HOST = '127.0.0.1'
PORT = 20001
ADDR = (HOST, PORT)
udp_client = socket(AF_INET, SOCK_DGRAM)
# 进程间的通讯,面向网络套字节AF_INET
# Python只支持AF_INET、AF_UNIX、AF_NETLINK和AF_TIPC家族use_video_port
class RobotMotion:
def __init__(self):
pass
def holding_deer(self):
#data = str("{\"cmd\":\"set\",\"type\":\"led\",\"para\":{\"type\":\"camera\",\"mode\":\"on\",\"color\":\"red\"}}")
data = str("{\"cmd\":\"action\",\"type\":\"start\",\"para\":{\"name\":\"hold_deer_small\",\"repeat\":1 }}")
udp_client.sendto(data ,ADDR)
time.sleep(8)
def forward_step(self,num):
data_list = []
data_list.append("{\"cmd\":\"action\",\"type\":\"start\",\"para\":{\"name\":\"step_forward\",\"repeat\":")
data_list.append(str(num))
data_list.append("}}")
data = ''.join(data_list)
udp_client.sendto(data ,ADDR)
time.sleep(2*num)
def backward_step(self,num):
data_list = []
data_list.append("{\"cmd\":\"action\",\"type\":\"start\",\"para\":{\"name\":\"step_backward\",\"repeat\":")
data_list.append(str(num))
data_list.append("}}")
data = ''.join(data_list)
udp_client.sendto(data ,ADDR)
time.sleep(2*num)
def left_step(self,num):
data_list = []
data_list.append("{\"cmd\":\"action\",\"type\":\"start\",\"para\":{\"name\":\"step_left\",\"repeat\":")
data_list.append(str(num))
data_list.append("}}")
data = ''.join(data_list)
udp_client.sendto(data ,ADDR)
time.sleep(num)
def right_step(self,num):
data_list = []
data_list.append("{\"cmd\":\"action\",\"type\":\"start\",\"para\":{\"name\":\"step_right\",\"repeat\":")
data_list.append(str(num))
data_list.append("}}")
data = ''.join(data_list)
udp_client.sendto(data ,ADDR)
time.sleep(num)
def turn_left_step(self,num):
data_list = []
data_list.append("{\"cmd\":\"action\",\"type\":\"start\",\"para\":{\"name\":\"step_turn_left\",\"repeat\":")
data_list.append(str(num))
data_list.append("}}")
data = ''.join(data_list)
udp_client.sendto(data ,ADDR)
time.sleep(num)
def turn_right_step(self,num):
data_list = []
data_list.append("{\"cmd\":\"action\",\"type\":\"start\",\"para\":{\"name\":\"step_turn_right\",\"repeat\":")
data_list.append(str(num))
data_list.append("}}")
data = ''.join(data_list)
udp_client.sendto(data ,ADDR)
time.sleep(num)
def reset(self,num):
data_list = []
data_list.append("{\"cmd\":\"action\",\"type\":\"start\",\"para\":{\"name\":\"reset\",\"repeat\":")
data_list.append(str(num))
data_list.append("}}")
data = ''.join(data_list)
udp_client.sendto(data ,ADDR)
time.sleep(0.5)
def get_circles(img):
x = 0
y = 0
z = 0
blurred = cv2.GaussianBlur(img, (11, 11), 0)
# 高斯滤波
# 参数:
# src: 原图像
# dst: 目标图像
# ksize: 高斯核的大小;(width, height);两者都是正奇数;如果设为0,则可以根据sigma得到;
# sigmaX: X方向的高斯核标准差;
# sigmaY: Y方向的高斯核标准差;
# 如果sigmaY设为0,则与sigmaX相等;
# 如果两者都为0,则可以根据ksize来计算得到;
# (推荐指定ksize,sigmaX,sigmaY)
# borderType: pixel extrapolation method
hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
# 色彩空间转化函数,将目标blurred格式转换为RGB转到HSV
mask = cv2.inRange(hsv, lower_purple, upper_purple)
# 第一个参数:hsv指的是原图
# 第二个参数:lower_purple指的是图像中低于这个lower_purple的值,图像值变为0
# 第三个参数:upper_purple指的是图像中高于这个upper_purple的值,图像值变为0
# 而在lower_red~upper_red之间的值变成255
mask = cv2.erode(mask, None, iterations=2)
# cv2.erode腐蚀函数
# kernel:核的大小,none为默认大小
# iteration:膨胀和腐蚀次数;叠代iteration的值越高,模糊程度(腐蚀程度)就越高 呈正相关关系
mask = cv2.dilate(mask, None, iterations=2)
# 膨胀函数与腐蚀函数相似
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
# cv2.findContours轮廓检测
# cv2.RETR_EXTERNAL表示只检测外轮廓
# cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
# -2不懂是什么鬼
if len(cnts) > 0:
c = max(cnts, key=cv2.contourArea)
# max函数返回最大值
# cv2.contourArea轮廓面积
# 意思是返回一个最大的轮廓,其他不要
((x, y), z) = cv2.minEnclosingCircle(c)
# cv2.minEnclosingCircle:可以帮我们找到一个对象的外切圆。它是所有能够包括对象的圆中面积最小的一个
return int(x),int(y),int(z),img
def draw_frame(img,x,y,z):
# 函数的参数优点:可以随时变换,不是规定死的
if(z > 15):
cv2.circle(img,(x,y),z,(0,255,0),5)
# cv2.circle(img, center, radius, color[, thickness=None[, lineType=None[, shift=None]]])
# 作用
# 根据给定的圆心和半径等画圆
# 参数说明
# img:输入的图片data
# center:圆心位置
# radius:圆的半径
# color:圆的颜色
# thickness:圆形轮廓的粗细(如果为正)。负厚度表示要绘制实心圆。
# lineType: 圆边界的类型。
# shift:中心坐标和半径值中的小数位数
print("circle_center is : ",x,y)
# 打印出圆心
print("radius is : ",z)
# 打印半径
cv2.imshow('Color_tracking', img)
# 显示画图圆后的图
def (x,y,z):
global hold_flag
# global可以在函数体中修改全局变量中已经赋值的变量
global release_flag
if z > 20 :
if(x < 150):
print"ok left"
my_robot.left_step(1)
my_robot.reset(1)
if(x > 300):
print"ok right"
my_robot.right_step(1)
my_robot.reset(1)
if x > 200 and x < 260:
if z > 100 :
my_robot.holding_deer()
my_robot.forward_step(2)
time.sleep(5)
my_robot.reset(1)
release_flag = 1
def camera_thread():
global center_x,center_y,radius
global release_flag
print "camera_thread run."
for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):
image = frame.array
x,y,z,l = get_circles(image)
center_x = x
center_y = y
radius = z
draw_frame(l,x,y,z)
rawCapture.truncate(0)
key = cv2.waitKey(1) & 0xFF
# 按'q'健退出循环
if key == ord('q'):
break
if release_flag == 1 :
break
# When everything done, release the capture
#camera.release()
cv2.destroyAllWindows()
def track_thread():
global center_x,center_y,radius
print "track_thread run."
while True :
walk_track(center_x,center_y,radius)
time.sleep(0.1)
if __name__ == '__main__':
my_robot = RobotMotion()
my_robot.reset(1)
threads = []
t1 = threading.Thread(target=camera_thread,args=())
threads.append(t1)
t2 = threading.Thread(target=track_thread,args=())
threads.append(t2)
for t in threads:
t.setDaemon(True)
t.start()
for t in threads:
t.join()
print "exit all task."