-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnaive_bayes.py
60 lines (45 loc) · 1.94 KB
/
naive_bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn import datasets
def accuracy(y_true, y_pred):
accuracy = np.sum(y_true == y_pred) / len(y_true)
return accuracy
class NaiveBayes:
def fit(self, X, y):
self.unique_classes = np.unique(y)
classes_num = len(self.unique_classes)
samples_num, features_num = X.shape
self._mean = np.zeros((classes_num, features_num), dtype=np.float64)
self._var = np.zeros((classes_num, features_num), dtype=np.float64)
self._priors = np.zeros(classes_num, dtype=np.float64)
for idx, c in enumerate(self.unique_classes):
X_c = X[y == c] # gives features of class c
self._mean[idx, :] = np.mean(X_c, axis=0)
self._var[idx, :] = np.var(X_c, axis=0)
self._priors[idx] = len(X_c) / samples_num
def predict(self, X):
predictions = [self._predict(x) for x in X]
return np.array(predictions)
def _predict(self, x):
posteriors = []
for idx, _ in enumerate(self.unique_classes):
likelihood = self._compute_likelihood(idx, x)
prior = np.log(self._priors[idx])
posterior = prior + likelihood
posteriors.append(posterior)
return np.argmax(posteriors)
def _compute_likelihood(self, idx, x):
nominator = np.exp(-((x - self._mean[idx]) ** 2) / (2 * self._var[idx]))
denominator = np.sqrt(2 * np.pi * self._var[idx])
return np.sum(np.log(nominator / denominator))
if __name__ == "__main__":
X, y = datasets.make_classification(
n_samples=1000, n_features=10, n_classes=2, random_state=123
)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=123
)
nb = NaiveBayes()
nb.fit(X_train, y_train)
predictions = nb.predict(X_test)
print("Naive Bayes classification accuracy", accuracy(y_test, predictions))