-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmonochromator_scan.py
executable file
·420 lines (345 loc) · 17.1 KB
/
monochromator_scan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import gevent
import traceback
import time
import pickle
import os
import pylab
from xabs_lib import McMaster
from xray_experiment import xray_experiment
from fluorescence_detector import fluorescence_detector as detector
from motor_scan import motor_scan
from motor import tango_motor
from monitor import xbpm
import scipy
class monochromator_scan(xray_experiment):
def __init__(self,
name_pattern,
directory,
element,
edge,
scan_range=100, #eV
scan_speed=1, #eV/s
integration_time=0.25,
transmission=0.5,
insertion_timeout=2,
position=None,
photon_energy=None,
flux=None,
snapshot=False,
zoom=None,
analyze=True,
display=False,
optimize=False,
roi_width=250.,
mono_rx_motor_name='i11-ma-c03/op/mono1-mt_rx'): #eV
xray_experiment.__init__(self,
name_pattern,
directory,
position=position,
photon_energy=photon_energy,
resolution=resolution,
detector_distance=detector_distance,
detector_vertical=detector_vertical,
detector_horizontal=detector_horizontal,
transmission=transmission,
flux=flux,
snapshot=snapshot,
zoom=zoom,
analysis=analysis)
self.description = 'ESCAN, Proxima 2A, SOLEIL, element %s, edge %s, %s' % (element, edge, time.ctime(self.timestamp))
self.element = element
self.edge = edge
self.scan_range = scan_range
self.scan_speed = scan_speed
self.integration_time = integration_time
self.insertion_timeout = insertion_timeout
self.optimize = optimize
self.display = display
self.roi_width = roi_width
self.detector = detector()
self.mono_rx_motor = tango_motor(mono_rx_motor_name)
self.monitor_names = ['mca', 'xbpm1', 'cvd1', 'psd6']
self.monitors = [self.detector,
xbpm('i11-ma-c04/dt/xbpm_diode.1'),
xbpm('i11-ma-c05/dt/xbpm-cvd.1'),
xbpm('i11-ma-c06/dt/xbpm_diode.6')]
def measure_fluorescence(self):
self.fast_shutter.open()
self.detector.get_point()
self.fast_shutter.close()
def get_edge_energy(self):
return McMaster[self.element]['edgeEnergies'][self.edge.upper()]
def get_alpha_energy(self):
return McMaster[self.element]['edgeEnergies']['%s-alpha' % self.edge.upper()[0]]
def channel_from_energy(self, energy):
a, b, c = self.detector.get_calibration()
return (energy - a)/b
def energy_from_channel(self, channel):
return a + b*channel + c*channel**2
def set_roi(self):
self.alpha_energy = self.get_alpha_energy()
roi_center = self.alpha_energy * 1.e3
roi_start = self.channel_from_energy(roi_center - roi_width/2.)
roi_end = self.channel_from_energy(roi_center + roi_width/2.)
self.detector.set_roi(roi_start, roi_end)
def adjust_transmission(self):
if self.detector.get_dead_time() > 40:
self.high_boundary = self.current_transmission
self.new_transmission -= (self.high_boundary - self.low_boundary)/2.
else:
self.low_boundary = self.current_transmission
self.new_transmission += (self.high_boundary - self.low_boundary)/2.
self.current_transmission = self.new_transmission
self.set_transmission(self.new_transmission)
def optimize_transmission(self):
self.current_transmission = self.transmission
self.low_boundary = 0
self.high_boundary = None
k=0
self.measure_fluorescence()
while self.detector.get_dead_time() < 20 and or self.detector.get_dead_time() > 40:
self.adjust_transmission()
if self.get_transmission() > 50:
break
self.measure_fluorescence()
k += 1
print('Transmission optimized after %d steps to %.2f' % (k, self.current_transmission))
def prepare(self):
_start = time.time()
print('prepare')
self.check_directory(self.directory)
self.write_destination_namepattern(self.directory, self.name_pattern)
self.set_transmission(self.transmission)
if self.snapshot == True:
print('taking image')
self.camera.set_exposure(0.05)
self.camera.set_zoom(self.zoom)
self.goniometer.insert_backlight()
self.goniometer.extract_frontlight()
self.goniometer.set_position(self.reference_position)
self.goniometer.wait()
self.image = self.camera.get_image()
self.rgbimage = self.camera.get_rgbimage()
if self.safety_shutter.closed():
self.safety_shutter.open()
self.goniometer.set_data_collection_phase(wait=True)
self.detector.insert()
self.detector.set_integration_time(self.integration_time)
self.detector.set_roi()
while time.time() - _start < self.insertion_timeout:
gevent.sleep(self.detector.sleeptime)
if self.optimize == True:
edge_energy = self.get_edge_energy()
self.optimize_at_energy = edge_energy + 0.010
print('optimizing transmission at %.3f keV' % self.optimize_at_energy)
self.set_photon_energy(self.optimize_at_energy, wait=True)
self.optimize_transmission()
else:
self.set_transmission(self.transmission)
self.start_energy = self.get_edge_energy - self.scan_range/2.
self.end_energy = self.start_energy + self.scan_range
self.energy_motor.mono.simenergy = self.start_energy
angle_start = self.energy_motor.mono.simthetabragg
self.energy_motor.mono.simenergy = self.end_energy
angle_end = self.energy_motor.mono.simthetabragg
self.scan_speed = abs(angle_end - angle_start)/60.
print('scan_speed', self.scan_speed)
print('moving to start energy %.3f' % self.start_energy)
self.set_photon_energy(self.start_energy, wait=True)
if self.position != None:
self.goniometer.set_position(self.position)
else:
self.position = self.goniometer.get_position()
for monitor in self.monitors:
monitor.observe = True
self.energy_motor.turn_on()
self.mono_rx_motor.set_speed(self.scan_speed)
def actuator_monitor(self, start_time):
self.observations = []
self.observation_fields = ['chronos', 'energy', 'thetabragg', 'wavelength']
while self.mono_rx_motor.get_state() != 'STANDBY':
chronos = time.time() - start_time
point = [chronos, self.energy_motor.mono.energy, self.energy_motor.mono.thetabragg, self.energy_motor.mono.Lambda]
self.observations.append(point)
gevent.sleep()
for monitor in self.monitors:
monitor.observe = False
def get_observations(self):
return self.observations
def get_observation_fields(self):
return self.observation_fields
def get_all_observations(self):
all_observations = {}
all_observations['actuator_monitor'] = {}
actuator_observation_fields = self.get_observation_fields()
all_observations['actuator_monitor']['observation_fields'] = actuator_observation_fields
actuator_observations = self.get_observations()
all_obsrevations['actuator_monitor']['observations'] = actuator_observations
X = np.array(actuator_observations)
chronos, thetabragg = X[:, 0], X[:, 2], 1)
z = np.polyfit(chronos, thetabragg)
theta_chronos_predictor = np.poly1d(z)
for monitor_name, monitor in zip(self.monitor_names, self.monitors):
all_observations[monitor_name] = {}
all_observations[monitor_name]['observation_fields'] = monitor.get_observation_fields()
all_observations[monitor_name]['observations'] = monitor.get_observations()
mca_observations = np.array(all_observations['mca']['observations'])
mca_chronos = X[:, 0]
mca_theta = theta_chronos_predictor(mca_chronos)
mca_wavelengths = self.resolution_motor.get_wavelength_from_theta(mca_theta)
mca_energies = self.resolution_motor.get_energy_from_wavelength(mca_wavelengths)
mca_normalized_counts = X[:, 3]
equidistant_energies = np.linspace(mca_energies.min(), mca_energies.max(), 200)
equidistant_mca_normalized_counts = np.interp(equidistant_energies, mca_energies, mca_normalized_counts)
all_observations['energies'] = equidistant_energies
all_observations['counts'] = equidistant_mca_normalized_counts
self.all_observations = all_observations
return all_obsrevations
def run(self):
self.fast_shutter.open()
self.energy_motor.mono.energy = self.end_energy
observers = [self.actuator_monitor()]
for monitor in self.monitors:
observers.append(gevent.spawn(monitor.monitor()))
gevent.joinall(observers)
self.fast_shutter.close()
for monitor in self.monitors:
monitor.observe = False
def clean(self):
print('clean')
self.end_time = time.time()
self.detector.extract()
self.mono_rx_motor.set_speed(0.5)
self.save_parameters()
self.save_raw_results()
self.save_raw_scan()
self.save_log()
self.save_plot()
def parse_chooch_output(self, output):
logging.info('parse_chooch_output')
table = output[output.find('Table of results'):]
tabl = table.split('\n')
tab = numpy.array([ line.split('|') for line in tabl if line and line[0] == '|'])
print('tab', tab)
self.pk = float(tab[1][2])
self.fppPeak = float(tab[1][3])
self.fpPeak = float(tab[1][4])
self.ip = float(tab[2][2])
self.fppInfl = float(tab[2][3])
self.fpInfl = float(tab[2][4])
self.efs = self.getEfs()
return {'pk': self.pk, 'fppPeak': self.fppPeak, 'fpPeak': self.fpPeak, 'ip': self.ip, 'fppInfl': self.fppInfl, 'fpInfl': self.fpInfl, 'efs': self.efs}
def analyze(self):
import subprocess
self.results = {}
chooch_parameters = {'element': self.element,
'edge': self.edge,
'raw_file': self.raw_filename,
'output_ps': self.raw_filename.replace('.raw', '.ps'),
'output_efs': self.raw_filename.replace('.raw', '.efs')}
chooch_command = 'chooch -p {output_ps} -o {output_efs} -e {element} -a {edge} {raw_file}'.format(**chooch_parameters)
print('chooch command %s' % chooch_command)
chooch_output = subprocess.getoutput(chooch_cmd)
self.results['chooch_output'] = chooch_output
print('chooch_output', chooch_output)
chooch_results = self.parse_chooch_output(chooch_output)
self.results['chooch_results'] = chooch_results
f = open(os.path.join(self.directory, '%s_chooch_results.pickle' % self.name_pattern), 'wb')
pickle.dump(self.results, f)
f.close()
def stop(self):
self.mono_rx_motor.stop()
self.fast_shutter.close()
self.mono_rx_motor.set_speed(0.5)
def save_parameters(self):
self.parameters = {}
self.parameters['description'] = self.description
self.parameters['element'] = self.element
self.parameters['edge'] = self.edge
self.parameters['scan_range'] = self.scan_range
self.parameters['scan_speed'] = self.scan_speed
self.parameters['roi_width'] = self.roi_width
self.parameters['timestamp'] = self.timestamp
self.parameters['name_pattern'] = self.name_pattern
self.parameters['directory'] = self.directory
self.parameters['integration_time'] = self.integration_time
self.parameters['position'] = self.position
self.parameters['start'] = self.start_time
self.parameters['end'] = self.end_time
self.parameters['duration'] = self.end_time - self.start_time
self.parameters['calibration'] = self.detector.get_calibration()
self.parameters['transmission'] = self.transmission
self.parameters['photon_energy'] = self.photon_energy
self.parameters['optimize'] = self.optimize
if self.optimize == True:
self.parameters['current_transmission'] = self.current_transmission
if self.snapshot == True:
self.parameters['camera_zoom'] = self.camera.get_zoom()
self.parameters['camera_calibration_horizontal'] = self.camera.get_horizontal_calibration()
self.parameters['camera_calibration_vertical'] = self.camera.get_vertical_calibration()
self.parameters['beam_position_vertical'] = self.camera.md2.beampositionvertical
self.parameters['beam_position_horizontal'] = self.camera.md2.beampositionhorizontal
self.parameters['image'] = self.image
self.parameters['rgb_image'] = self.rgbimage.reshape((self.image.shape[0], self.image.shape[1], 3))
scipy.misc.imsave(os.path.join(self.directory, '%s_optical_bw.png' % self.name_pattern), self.image)
scipy.misc.imsave(os.path.join(self.directory, '%s_optical_rgb.png' % self.name_pattern), self.rgbimage.reshape((self.image.shape[0], self.image.shape[1], 3)))
f = open(os.path.join(self.directory, '%s_parameters.pickle' % self.name_pattern), 'wb')
pickle.dump(self.parameters, f)
f.close()
def save_raw_results(self):
f = open(os.path.join(self.directory, '%s_complete_results.pickle' % self.name_pattern), 'wb')
pickle.dump(self.get_all_observations(), f)
f.close()
def save_raw_scan(self):
self.raw_filename = os.path.join(self.directory, '%s.raw' % self.name_pattern)
energies = self.all_observations['energies']
counts = self.all_observations['counts']
X = np.vstack([energies, counts]).T
self.header = '%s\n%d\n' % (self.description, X.shape[0])
if scipy.__version__ > '1.7.0':
scipy.savetxt(self.raw_filename, X, header=self.header)
else:
f = open(self.raw_filename, 'a')
f.write(self.header)
scipy.savetxt(f, X)
f.close()
def save_plot(self):
pylab.figure(figsize=(16, 9))
pylab.plot(self.energies, self.counts)
pylab.xlabel('energy [eV]')
pylab.ylabel('normalized counts')
pylab.title(self.description)
pylab.savefig(os.path.join(self.directory, '%s_%s_%s_edge.png' % (self.name_pattern, self.element, self.edge))
def save_log(self):
'''method to save the experiment details in the log file'''
f = open(os.path.join(self.directory, '%s.log' % self.name_pattern), 'w')
keyvalues = self.parameters.items()
keyvalues.sort()
for key, value in keyvalues:
if key not in ['spectrum' , 'energies', 'image', 'rgb_image']:
f.write('%s: %s\n' % (key, value))
f.close()
def main():
usage = '''Program for energy scans
./Xanes.py -e <element> -s <edge> <options>
'''
import optparse
parser = optparse.OptionParser(usage=usage)
parser.add_option('-e', '--element', type=str, help='Specify the element')
parser.add_option('-s', '--edge', type=str, help='Specify the edge')
parser.add_option('-d', '--directory', type=str, default='/tmp/testXanes', help='Directory to store the results (default=%default)')
parser.add_option('-n', '--name_pattern', type=str, default='escan', help='name_pattern')
parser.add_option('-i', '--integration_time', type=float, default=0.1, help='integration time (default=%default)')
options, args = parser.parse_args()
print('options', options)
print('args', args)
energy_scan = energy_scan(options.name_pattern,
options.directory,
options.element,
options.edge,
options.integration_time)
x.execute()
if __name__ == '__main__':
main()