-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerate_xds_input.py
executable file
·571 lines (505 loc) · 24.7 KB
/
generate_xds_input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
#!/usr/bin/python
# -*- coding: utf-8 -*-
import sys
import h5py
import os.path
import re
# This script was originally developed by Andreas Förster at DECTRIS based on work by Marcus Mueller.
# Please note that this is not an official DECTRIS product and neither endorsed nor supported by DECTRIS.
# Please report errors and problems to [email protected].
# Original XDS_from_H5 script modified by Martin Savko (synchrotron Soleil) to rely on h5py to access header
# information instead of albula API.
XDS_header_lines = """!*****************************************************************************
!
! XDS.INP template for ! %(family)s %(detector)s with %(sensor).2f mm thick silicon sensors.
!
! Characters to the right of an exclamation mark are comments.
!
! This file was autogenerated by XDS_from_H5.py (Oct 2015).
! Please check default values before processing.
!
! For questions and comments please contact [email protected].
!
!*****************************************************************************
"""
XDS_detector_lines = """
!====================== DETECTOR PARAMETERS ==================================
DETECTOR=%(family)s
MINIMUM_VALID_PIXEL_VALUE=0
OVERLOAD= %(cutoff)i ! taken from HDF5 header item
! /entry/instrument/detector/detectorSpecific/countrate_correction_count_cutoff
SENSOR_THICKNESS=%(sensor).2f ! [mm]
!SILICON=-1.0
QX=%(pixsize_x).3f QY=%(pixsize_y).3f ! [mm]
"""
XDS_main_lines = """
TRUSTED_REGION=0.0 1.41 !Relative radii limiting trusted detector region
DIRECTION_OF_DETECTOR_X-AXIS= 1.0 0.0 0.0
DIRECTION_OF_DETECTOR_Y-AXIS= 0.0 1.0 0.0 ! 0.0 cos(2theta) sin(2theta)
!====================== JOB CONTROL PARAMETERS ===============================
JOB= XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE CORRECT
!JOB= DEFPIX INTEGRATE CORRECT
! MAXIMUM_NUMBER_OF_JOBS= 6 !Speeds up COLSPOT & INTEGRATE on multicore machine
! MAXIMUM_NUMBER_OF_PROCESSORS= 12 !<32;ignored by single cpu version of xds
!SECONDS=0 !Maximum number of seconds to wait until data image must appear
!TEST=1 !Test flag. 1,2 additional diagnostics and images
!====================== GEOMETRICAL PARAMETERS ===============================
!ORGX and ORGY are often close to the image center, i.e. ORGX=NX/2, ORGY=NY/2
ORGX= %(orgx).1f ORGY= %(orgy).1f !Detector origin (pixels). ORGX=NX/2; ORGY=NY/2
DETECTOR_DISTANCE= %(dist).2f ! [mm]
ROTATION_AXIS= 1.0 0.0 0.0
! Optimal choice is 0.5*mosaicity (REFLECTING_RANGE_E.S.D.= mosaicity)
OSCILLATION_RANGE=%(osc_range).5f ! [deg] (>0)
X-RAY_WAVELENGTH=%(wavelength).4f ! [A]
INCIDENT_BEAM_DIRECTION=0.0 0.0 1.0
FRACTION_OF_POLARIZATION=0.99 !default=0.5 for unpolarized beam
POLARIZATION_PLANE_NORMAL= 0.0 1.0 0.0
!======================= CRYSTAL PARAMETERS =================================
SPACE_GROUP_NUMBER=0 !0 for unknown crystals; cell constants are ignored.
UNIT_CELL_CONSTANTS= 0 0 0 0 0 0
! You may specify here the x,y,z components for the unit cell vectors if
! known from a previous run using the same crystal in the same orientation
!UNIT_CELL_A-AXIS=
!UNIT_CELL_B-AXIS=
!UNIT_CELL_C-AXIS=
!Optional reindexing transformation to apply on reflection indices
!REIDX= 0 0 -1 0 0 -1 0 0 -1 0 0 0
FRIEDEL'S_LAW= TRUE ! Default is TRUE.
!REFERENCE_DATA_SET= CK.HKL ! Name of a reference data set (optional)
!==================== SELECTION OF DATA IMAGES ==============================
!Generic file name and format (optional) of data images
NAME_TEMPLATE_OF_DATA_FRAMES=%(name_template)s ! HDF5
"""
XDS_tail_lines = """
!==================== DATA COLLECTION STRATEGY (XPLAN) ======================
! !!! Warning !!!
! If you processed your data for a crystal with unknown cell constants and
! space group symmetry, XPLAN will report the results for space group P1.
!STARTING_ANGLE= 0.0 STARTING_FRAME=1
!used to define the angular origin about the rotation axis.
!Default: STARTING_ANGLE= 0 at STARTING_FRAME=first data image
!RESOLUTION_SHELLS=10 6 5 4 3 2 1.5 1.3 1.2
!STARTING_ANGLES_OF_SPINDLE_ROTATION= 0 180 10
!TOTAL_SPINDLE_ROTATION_RANGES=30.0 120 15
!====================== INDEXING PARAMETERS =================================
!Never forget to check this, since the default 0 0 0 is almost always correct!
!INDEX_ORIGIN= 0 0 0 ! used by "IDXREF" to add an index offset
!Additional parameters for fine tuning that rarely need to be changed
!INDEX_ERROR=0.05 INDEX_MAGNITUDE=8 INDEX_QUALITY=0.8
SEPMIN=4.0 ! default is 6 for other detectors
CLUSTER_RADIUS=2 ! default is 3 for other detectors
!MAXIMUM_ERROR_OF_SPOT_POSITION=3.0
!MAXIMUM_ERROR_OF_SPINDLE_POSITION=2.0
!MINIMUM_FRACTION_OF_INDEXED_SPOTS=0.5
!============== DECISION CONSTANTS FOR FINDING CRYSTAL SYMMETRY =============
!Decision constants for detection of lattice symmetry (IDXREF, CORRECT)
MAX_CELL_AXIS_ERROR= 0.03 ! Maximum relative error in cell axes tolerated
MAX_CELL_ANGLE_ERROR= 2.0 ! Maximum cell angle error tolerated
!Decision constants for detection of space group symmetry (CORRECT).
!Resolution range for accepting reflections for space group determination in
!the CORRECT step. It should cover a sufficient number of strong reflections.
TEST_RESOLUTION_RANGE= 8.0 4.5
MIN_RFL_Rmeas= 50 ! Minimum #reflections needed for calculation of Rmeas
MAX_FAC_Rmeas= 2.0 ! Sets an upper limit for acceptable Rmeas
!================= PARAMETERS CONTROLLING REFINEMENTS =======================
REFINE(IDXREF)= BEAM AXIS ORIENTATION CELL ! POSITION
REFINE(INTEGRATE)= POSITION ORIENTATION ! BEAM CELL AXIS
REFINE(CORRECT)= POSITION BEAM ORIENTATION CELL AXIS
!================== CRITERIA FOR ACCEPTING REFLECTIONS ======================
VALUE_RANGE_FOR_TRUSTED_DETECTOR_PIXELS= 6000 30000 !Used by DEFPIX
!for excluding shaded parts of the detector.
INCLUDE_RESOLUTION_RANGE= 65.0 %(reso_range).1f !Angstroem; used by DEFPIX,INTEGRATE,CORRECT
!used by CORRECT to exclude ice-reflections
!EXCLUDE_RESOLUTION_RANGE= 3.93 3.87 !ice-ring at 3.897 Angstrom
!EXCLUDE_RESOLUTION_RANGE= 3.70 3.64 !ice-ring at 3.669 Angstrom
!EXCLUDE_RESOLUTION_RANGE= 3.47 3.41 !ice-ring at 3.441 Angstrom
!EXCLUDE_RESOLUTION_RANGE= 2.70 2.64 !ice-ring at 2.671 Angstrom
!EXCLUDE_RESOLUTION_RANGE= 2.28 2.22 !ice-ring at 2.249 Angstrom
!EXCLUDE_RESOLUTION_RANGE= 2.102 2.042 !ice-ring at 2.072 Angstrom - strong
!EXCLUDE_RESOLUTION_RANGE= 1.978 1.918 !ice-ring at 1.948 Angstrom - weak
!EXCLUDE_RESOLUTION_RANGE= 1.948 1.888 !ice-ring at 1.918 Angstrom - strong
!EXCLUDE_RESOLUTION_RANGE= 1.913 1.853 !ice-ring at 1.883 Angstrom - weak
!EXCLUDE_RESOLUTION_RANGE= 1.751 1.691 !ice-ring at 1.721 Angstrom - weak
!MINIMUM_ZETA=0.05 !Defines width of 'blind region' (XPLAN,INTEGRATE,CORRECT)
!WFAC1=1.0 !This controls the number of rejected MISFITS in CORRECT;
!a larger value leads to fewer rejections.
!REJECT_ALIEN=20.0 ! Automatic rejection of very strong reflections
!============== INTEGRATION AND PEAK PROFILE PARAMETERS =====================
!Specification of the peak profile parameters below overrides the automatic
!determination from the images
!Suggested values are listed near the end of INTEGRATE.LP
!BEAM_DIVERGENCE= 0.80 !arctan(spot diameter/DETECTOR_DISTANCE)
!BEAM_DIVERGENCE_E.S.D.= 0.080 !half-width (Sigma) of BEAM_DIVERGENCE
!REFLECTING_RANGE= 0.780 !for crossing the Ewald sphere on shortest route
!REFLECTING_RANGE_E.S.D.= 0.113 !half-width (mosaicity) of REFLECTING_RANGE
! NUMBER_OF_PROFILE_GRID_POINTS_ALONG_ALPHA/BETA=15!used by: INTEGRATE
! NUMBER_OF_PROFILE_GRID_POINTS_ALONG_GAMMA=15 !used by: INTEGRATE
!DELPHI= 6.0!controls the number of reference profiles and scaling factors
!CUT=2.0 !defines the integration region for profile fitting
!MINPK=75.0 !minimum required percentage of observed reflection intensity
!======= PARAMETERS CONTROLLING CORRECTION FACTORS (used by: CORRECT) =======
!MINIMUM_I/SIGMA=3.0 !minimum intensity/sigma required for scaling reflections
!NBATCH=-1 !controls the number of correction factors along image numbers
!REFLECTIONS/CORRECTION_FACTOR=50 !minimum #reflections/correction needed
!PATCH_SHUTTER_PROBLEM=TRUE !FALSE is default
!STRICT_ABSORPTION_CORRECTION=TRUE !FALSE is default
!CORRECTIONS= DECAY MODULATION ABSORPTION
!=========== PARAMETERS DEFINING BACKGROUND AND PEAK PIXELS =================
!STRONG_PIXEL=3.0 !used by: COLSPOT
!A 'strong' pixel to be included in a spot must exceed the background
!by more than the given multiple of standard deviations.
!MAXIMUM_NUMBER_OF_STRONG_PIXELS=1500000 !used by: COLSPOT
!SPOT_MAXIMUM-CENTROID=3.0 !used by: COLSPOT
MINIMUM_NUMBER_OF_PIXELS_IN_A_SPOT=3 !used by: COLSPOT
!This allows to suppress spurious isolated pixels from entering the
!spot list generated by "COLSPOT".
!NBX=3 NBY=3 !Define a rectangle of size (2*NBX+1)*(2*NBY+1)
!The variation of counts within the rectangle centered at each image pixel
!is used for distinguishing between background and spot pixels.
!BACKGROUND_PIXEL=6.0 !used by: COLSPOT,INTEGRATE
!An image pixel does not belong to the background region if the local
!pixel variation exceeds the expected variation by the given number of
!standard deviations.
!SIGNAL_PIXEL=3.0 !used by: INTEGRATE
!A pixel above the threshold contributes to the spot centroid
!FIXED_SCALE_FACTOR=TRUE !Default is FALSE; used by : INIT,INTEGRATE
"""
detector_families = {
'pilatus' : {
'nmodules' : {
'12M': (5, 24),
'6M' : (5, 12),
'2M' : (3 ,8),
'1M' : (2, 5),
'300K-W': (3, 1),
'300K' : (1 ,3),
'200K' : (1 ,2),
'100K' : (1, 1),
},
'module' : {
'size': (487, 195),
'gap': (7, 17),
'pixel_size': (0.172e-03, 0.172e-03),
'nchips': (8, 2),
},
'chip': {
'size': (60, 97),
'gap': (1, 1),
},
'sizes' : {}, # will be populated with correct sizes
},
'eiger' : {
'nmodules' : {
'1M': (1, 2),
'4M': (2, 4),
'9M': (3, 6),
'16M': (4, 8),
},
'module' : {
'size': (1030, 514),
'gap': (10, 37),
'pixel_size': (0.075e-03, 0.075e-03),
'nchips': (4, 2),
},
'chip' : {
'size' : (256, 256),
'gap' : (2, 2),
},
'sizes' : {}, # will be populated with correct sizes
},
}
# All interesting parameters
incident_wavelength = "/entry/instrument/beam/incident_wavelength"
software_version = "/entry/instrument/detector/detectorSpecific/software_version"
beam_center_x = "/entry/instrument/detector/beam_center_x"
beam_center_y = "/entry/instrument/detector/beam_center_y"
x_pixel_size = "/entry/instrument/detector/x_pixel_size"
y_pixel_size = "/entry/instrument/detector/y_pixel_size"
detector_distance = "/entry/instrument/detector/detector_distance"
sensor_thickness = "/entry/instrument/detector/sensor_thickness"
nimages = "/entry/instrument/detector/detectorSpecific/nimages"
description = "/entry/instrument/detector/description"
omega_range_average = "/entry/sample/goniometer/omega_range_average"
omega_increment = "/entry/sample/goniometer/omega_increment"
countrate_correction_count_cutoff = "/entry/instrument/detector/detectorSpecific/countrate_correction_count_cutoff"
resolution_cutoff = 'max resolution'
# The list below contains the parameters to be extracted from H5
parameters = [
incident_wavelength,
software_version,
beam_center_x,
beam_center_y,
x_pixel_size,
y_pixel_size,
detector_distance,
sensor_thickness,
nimages,
description,
omega_range_average,
countrate_correction_count_cutoff,
resolution_cutoff
]
def create_XDS_INP(parameters, file_name):
lines = []
description = parameters["/entry/instrument/detector/description"].split()
family = description[1].lower()
sensor = float(parameters["/entry/instrument/detector/sensor_thickness"]) * 1000.0
FAMILY = family.upper()
det_name = description[2]
file_template = re.sub("master\.h5", "??????.h5", file_name)
lines.append(XDS_header_lines % {
'family': FAMILY,
'detector': det_name,
'sensor': sensor,})
lines.append(XDS_detector_lines % {
'family': FAMILY,
'cutoff': int(float(parameters["/entry/instrument/detector/detectorSpecific/countrate_correction_count_cutoff"])),
'sensor': sensor,
'pixsize_x': float(parameters["/entry/instrument/detector/x_pixel_size"]) * 1000.0,
'pixsize_y': float(parameters["/entry/instrument/detector/y_pixel_size"]) * 1000.0,})
lines = lines + get_size_specific_lines(fam=family, det=det_name, n_excluded_edge_pixels=0)
lines.append(XDS_main_lines % {
'orgx': float(parameters["/entry/instrument/detector/beam_center_x"]),
'orgy': float(parameters["/entry/instrument/detector/beam_center_y"]),
'dist': float(parameters["/entry/instrument/detector/detector_distance"]) * 1000.0,
'osc_range': float(parameters["/entry/sample/goniometer/omega_range_average"]),
'wavelength': float(parameters["/entry/instrument/beam/incident_wavelength"]),
'name_template': file_template,})
first = 1
last = int(parameters["/entry/instrument/detector/detectorSpecific/nimages"])
para_images = int(full_parameters["/entry/instrument/detector/detectorSpecific/nimages"])
rotation = float(full_parameters["/entry/sample/goniometer/omega_range_average"])
lines.append("\n DATA_RANGE=%i %i\n" % (first, last))
if (para_images * rotation <= 30):
if (last > 100):
bkg = 100
else:
bkg = last
lines.append("\n")
lines.append(" BACKGROUND_RANGE=%i %i ! Numbers of first and last data image for background\n" % (first, bkg))
lines.append("!Five degrees are sufficient\n")
lines.append("\n")
lines.append(" SPOT_RANGE= %i %i ! Image range for finding spots\n" % (first, last))
lines.append("!Use all images if this range is not sufficient\n")
elif (para_images * rotation > 30):
# split spot finding into three 10 degree segments
bkg = first + int(5/rotation)
end1 = first + int(10/rotation)
start2 = first + int(last/2)
end2 = first + int(last/2) + int(10/rotation)
start3 = first + last - int(10/rotation) - 1
end3 = first + last - 1
lines.append("\n")
lines.append(" BACKGROUND_RANGE=%i %i ! Numbers of first and last data image for background\n" % (first, bkg))
lines.append("!Five degrees are sufficient\n")
lines.append("\n")
lines.append(" SPOT_RANGE= %i %i ! First image range for finding spots\n" % (first, end1))
lines.append(" SPOT_RANGE= %i %i ! Second image range for finding spots\n" % (start2, end2))
lines.append(" SPOT_RANGE= %i %i ! Third image range for finding spots\n" % (start3, end3))
lines.append("!Use all images if three ranges are not sufficient\n")
lines.append(XDS_tail_lines % {
'reso_range': float(parameters["max resolution"]),})
return lines
def get_size_specific_lines(fam, det, n_excluded_edge_pixels=0):
param_lines = []
gaps = calculate_gaps(
detector_families[fam]['sizes'][det],
detector_families[fam]['module']['size'],
detector_families[fam]['module']['gap'],
)
param_lines.append(' NX= %4d NY= %4d \n\n' % detector_families[fam]['sizes'][det])
param_lines.append('!EXCLUSION OF VERTICAL DEAD AREAS OF THE '
'%s %s DETECTOR \n' % (fam.upper(), det))
module_edge_comment = ('!EXCLUDING %d ADDITIONAL PIXELS OF THE '
'MODULE EDGES \n' % n_excluded_edge_pixels)
if n_excluded_edge_pixels > 0:
param_lines.append(module_edge_comment)
# offset is required because XDS.INP pixel values start with 1, not 0
offset = 1
for gap in gaps[0]:
param_lines.append(' UNTRUSTED_RECTANGLE= %4d %4d %4d %4d \n' % (
gap[0] - 1 + offset - n_excluded_edge_pixels,
gap[1] + 1 + offset + n_excluded_edge_pixels,
0,
detector_families[fam]['sizes'][det][1] + offset))
param_lines.append('\n')
param_lines.append('!EXCLUSION OF HORIZONTAL DEAD AREAS OF THE '
'%s %s DETECTOR \n' % (fam.upper(), det))
if n_excluded_edge_pixels > 0:
param_lines.append(module_edge_comment)
for gap in gaps[1]:
param_lines.append(' UNTRUSTED_RECTANGLE= %4d %4d %4d %4d \n' % (
0,
detector_families[fam]['sizes'][det][0] + offset,
gap[0] - 1 + offset - n_excluded_edge_pixels,
gap[1] + 1 + offset + n_excluded_edge_pixels))
return param_lines
def warning():
return ('\nThis script extracts from a given HDF5 master file all metadata\n'
'required to write XDS.INP. The user is prompted for missing metadata.\n'
'\n'
'WARNING - This script is a proof-of-principle, pre-alpha.\n'
'Do not rely on it for anything serious. Things will go wrong.\n'
'In particular, this does not work for data collected in ROI mode.\n'
'\n'
'Please report shortcomings and errors to [email protected]\n')
def help():
return ('ERROR - You must specify exactly one HDF5 master file:\n'
'\n'
'python XDS_from_H5.py <name>_master.h5\n')
permitted_versions = ["1.6.6", "1.6.2", "1.6.1", "1.6.0", "1.5.2", "1.5.1", "1.5.0", "1.2.0", "1.2.1", "1.3", "1.3.0", "1.4.0"]
def version_check(version):
if (str(version) in permitted_versions):
return 1
else:
return 0
zero_values = [0, "0", 0.0, "0.0"]
def isFile(file_input):
'''This function verifies that the file name entered by the user
corresponds to a master.h5 file and attaches an extension if necessary.'''
if os.path.isfile(file_input) and re.search("master\.h5\Z", file_input):
return file_input
elif os.path.isfile(file_input + ".h5") and re.search("master\Z", file_input):
return(file_input + ".h5")
else:
return 0
def request_parameter(parameter):
if (parameter == omega_range_average):
return raw_input("Please enter the oscillation range in degrees.\n")
elif (parameter == detector_distance):
return raw_input("Please enter the detector distance in meters.\n")
elif (parameter == incident_wavelength):
return raw_input("Please enter the wavelength in Angstrom.\n")
elif (parameter == beam_center_x):
return raw_input("Please enter the x coordinate of the beam center in pixels.\n")
elif (parameter == beam_center_y):
return raw_input("Please enter the y coordinate of the beam center in pixels.\n")
elif (parameter == x_pixel_size):
return raw_input("Please enter the x coordinate of the pixel size.\n")
elif (parameter == y_pixel_size):
return raw_input("Please enter the y coordinate of the pixel size.\n")
elif (parameter == sensor_thickness):
return raw_input("Please enter the sensor thickness in meters.\n")
elif (parameter == nimages):
return raw_input("Please enter the number of images.\n")
elif (parameter == description):
print("Please enter the description of the detector, e.g.")
return raw_input("Dectris Eiger 4M\n")
elif (parameter == countrate_correction_count_cutoff):
return raw_input("Please enter the maximum trusted pixel value.\n")
elif (parameter == resolution_cutoff):
#return raw_input("Please enter a resolution limit for processing.\n")
return 0
else:
print("Unknown software version. Please check.")
return 0
def calculate_gaps(det_size, mod_size, gap_size):
"""
Return list of tuples with first and last pixel in each detector gap.
One list for each detector dimension (x and y).
Input: total detector size in pixels
size of a module in pixels
size of a gap in pixels
"""
ndims = len(det_size)
gaps = []
for dim_index in range(ndims):
gaps.append([])
module_start = 0
while module_start < det_size[dim_index]:
# First pixel on a module has index 0, Python and C style
gap_start = module_start + mod_size[dim_index]
module_start = gap_start + gap_size[dim_index]
gap_end = module_start - 1
if module_start < det_size[dim_index]:
gaps[dim_index].append((gap_start, gap_end))
else:
break
return gaps
# Creates a dictionary of all keys and values in the NeXus tree
def iterate_children(node, nodeDict={}):
""" iterate over the children of a neXus node """
if node.type() == dec.DNeXusNode.GROUP:
for kid in node.children():
nodeDict = iterate_children(kid, nodeDict)
else:
nodeDict[node.path()] = node.value()
return nodeDict
# Extracts values from HDF5 file according to parameters array
def get_params(hdf5_file):
extracted = {}
h5cont = h5py.File(hdf5_file) #dec.DImageSeries(hdf5_file)
#neXus_tree = h5cont.neXus()
#neXus_root = neXus_tree.root()
#neXus_string_tree = iterate_children(neXus_root)
if (len(sys.argv) == 2):
print("Extracting metadata from " + hdf5_file)
print("Please modify XDS.INP if these numbers are incorrect.\n")
for i in parameters:
try:
extracted[i] = str(h5cont[i].value)
except:
extracted[i] = ""
return extracted
def calculate_size(n_modules, mod_size, gap_size):
n_gaps = [n - 1 for n in n_modules]
size = []
for nmod, ngap, nmodpix, ngappix in zip(n_modules, n_gaps, mod_size, gap_size):
size.append(nmod * nmodpix + ngap * ngappix)
return tuple(size)
# populate dicts with sizes of detectors in pixels
for family in list(detector_families.values()):
for model, n_modules in list(family['nmodules'].items()):
family['sizes'][model] = calculate_size(n_modules=n_modules,
mod_size=family['module']['size'],
gap_size=family['module']['gap'])
if __name__ == "__main__":
if len(sys.argv) == 2:
# Make sure that XDS.INP does not already exist
if os.path.isfile ("XDS.INP"):
print("\nERROR: XDS.INP exists already. Please rename and rerun script.")
else:
# test whether argument 1 is HDF5 file.
# attach ".h5" if necessary
clean_file = isFile(sys.argv[1])
if (clean_file):
print(warning())
full_parameters = get_params(clean_file)
for i, v in full_parameters.iteritems():
if (v in zero_values):
print(i + " = " + str(v) + " <== WARNING: Should this really be 0?")
full_parameters[i] = request_parameter(i)
print(i + " = " + str(full_parameters[i]))
elif (v == "NaN") or (v == ""):
print(i + " = " + v + " <== ERROR: undefined value.")
full_parameters[i] = request_parameter(i)
print(i + " = " + str(full_parameters[i]))
else:
print(i + " = " + str(v))
para_version = str(full_parameters[software_version])
if version_check(para_version):
param_lines = create_XDS_INP(full_parameters, clean_file)
open("XDS.INP", 'w').writelines(param_lines)
print("\nFile XDS.INP was created successfully.")
if (int(full_parameters["/entry/instrument/detector/detectorSpecific/nimages"]) == 1):
print("However, there's not much you can do with one image.\n")
else:
print("Please verify its contents before processing data.\n")
else:
print("\nThe HDF5 file was created with version %s of the detector firmware" % (para_version))
print("This script supports versions 1.5 and up.")
print("Please extract metadata with hdfview or h5dump.\n")
else:
print(help())
elif (len(sys.argv) == 3):
# This assumes the second argument is the rotation range
# The script will run non-interactively
# The master.h5 must be specified with its full name
# An existing XDS.INP will be overwritten
full_parameters = get_params(sys.argv[1])
full_parameters["omega_range_average"] = sys.argv[2]
param_lines = create_XDS_INP(full_parameters, sys.argv[1])
open("XDS.INP", 'w').writelines(param_lines)
else:
print(help())
exit(-1)