-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathenergy_scan.py
executable file
·812 lines (641 loc) · 34.2 KB
/
energy_scan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import gevent
import traceback
import logging
import time
import pickle
import os
import pylab
import numpy as np
import scipy
from xabs_lib import McMaster
from xray_experiment import xray_experiment
from fluorescence_detector import fluorescence_detector as detector
from motor_scan import motor_scan
from motor import tango_motor
from monitor import xbpm
from motor import monochromator_rx_motor
from attenuators import attenuators
from flyscan import flyscan
try:
import seaborn as sns
sns.set(color_codes=True)
except:
pass
try:
from matplotlib import rc
rc('text', usetex=True)
except:
pass
class energy_scan(xray_experiment):
specific_parameter_fields =[{'name': 'element', 'type': 'str', 'description': 'chemical element two letter name'},
{'name': 'edge', 'type': 'str', 'description': 'chemical element absorption edge (K, L1, L2 or L3)'},
{'name': 'scan_range', 'type': 'float', 'description': 'total scan range of the experiment in eV, default is 60. eV'},
{'name': 'scan_speed', 'type': 'float', 'description': 'scan speed in eV/s, default is 1. eV/s'},
{'name': 'scan_step', 'type': 'float', 'description': 'scan step in eV, only relevant for shuttered acquisition'},
{'name': 'roi_width', 'type': 'float', 'description': 'width of the detector roi in eV, default is 250 eV'},
{'name': 'integration_time', 'type': 'float', 'description': 'detector count time per single point in s, default is 0.8 s'},
{'name': 'total_time', 'type': 'float', 'description': 'total duration of the measurement (shutter open time) in s'},
{'name': 'optimize', 'type': 'bool', 'description': 'whether or not to optimize transmission'},
{'name': 'optimize_at_energy', 'type': 'float', 'description': 'photon energy at which to optimize transmission in eV'},
{'name': 'edge_energy_optimize_offset', 'type': 'float', 'description': 'offset photon energy by this amount in eV compared to theoretical edge position'},
{'name': 'start_offset', 'type': 'float', 'description': 'offset start of the scan range by this amount in eV'},
{'name': 'high_dead_time', 'type': 'float', 'description': 'maximum acceptable dead time of the detector during transmission optimization'},
{'name': 'low_dead_time', 'type': 'float', 'description': 'minimum acceptable dead time of detector during transmission optimization'},
{'name': 'max_transmission', 'type': 'float', 'description': 'maximum permitted transmission in %'},
{'name': 'experiment_transmission', 'type': 'float', 'description': 'optimized transmision of the experiment in %'},
{'name': 'equidistant_spectrum', 'type': 'bool', 'description': 'whether or not to generate equidistant spectrum (using interpolation) from measured values'},
{'name': 'ignore_first_eV', 'type': 'float', 'description': 'during analysis ignore this amount of eV at the low end of the measured range'},
{'name': 'ignore_last_eV', 'type': 'float', 'description': 'during analysis ignore this amount of eV at the high end of the measured range'},
{'name': 'inverse', 'type': 'bool', 'description': 'whether or not acquire from high to low energy'},
{'name': 'shutterless', 'type': 'bool', 'description': 'whether or not acquire in shutterless mode'}]
def __init__(self,
name_pattern,
directory,
element,
edge,
scan_range=100, #eV
scan_step=1., #eV only taken into account if shutterless==False
scan_speed=1, #eV/s
integration_time=0.8, #s
total_time=120., #s
transmission=1, #%
insertion_timeout=4, #s
roi_width=250., #eV
default_speed=0.5, #deg/s
edge_energy_optimize_offset=20., #eV
start_offset=10., #eV
high_dead_time=40., #%
low_dead_time=10., #%
max_transmission=50., #%
equidistant_spectrum=True,
ignore_first_eV=0., #option to not consider first f eV
ignore_last_eV=0., #option to not consider last f eV
default_config_file='0U5MICROS',
use_flyscan=False,
inverse=False,
shutterless=True,
position=None,
photon_energy=None,
flux=None,
display=False,
optimize=True,
snapshot=False,
zoom=None,
diagnostic=True,
analysis=True,
conclusion=None,
simulation=None,
parent=None):
if hasattr(self, 'parameter_fields'):
self.parameter_fields += energy_scan.specific_parameter_fields
else:
self.parameter_fields = energy_scan.specific_parameter_fields[:]
xray_experiment.__init__(self,
name_pattern,
directory,
position=position,
photon_energy=photon_energy,
transmission=transmission,
flux=flux,
snapshot=snapshot,
zoom=zoom,
diagnostic=diagnostic,
analysis=analysis,
conclusion=conclusion,
simulation=simulation)
self.description = 'ESCAN, Proxima 2A, SOLEIL, element %s, edge %s, %s' % (element, edge, time.ctime(self.timestamp))
self.element = element
self.edge = edge
self.scan_range = scan_range
self.scan_step = scan_step
self.scan_speed = scan_speed
self.integration_time = integration_time
self.total_time = total_time
self.insertion_timeout = insertion_timeout
self.optimize = optimize
self.display = display
self.roi_width = roi_width
self.default_speed = default_speed
self.edge_energy_optimize_offset = edge_energy_optimize_offset
self.start_offset = start_offset
self.high_dead_time = high_dead_time
self.low_dead_time = low_dead_time
self.max_transmission = max_transmission
self.equidistant_spectrum = equidistant_spectrum
self.ignore_first_eV = ignore_first_eV
self.ignore_last_eV = ignore_last_eV
self.inverse = inverse
self.shutterless = shutterless
self.parent = parent
self.use_flyscan = bool(use_flyscan)
self.default_config_file = default_config_file
self.detector = detector()
if self.use_flyscan:
self.flyscan = flyscan()
else:
self.detector.set_config_file(self.default_config_file)
self.actuator = monochromator_rx_motor()
self.attenuators = attenuators()
if self.shutterless == True:
self.monitor_names = ['mca'] + self.monitor_names
self.monitors = [self.detector] + self.monitors
self.total_expected_exposure_time = self.total_time
self.total_expected_wedges = 1
self.all_observations = None
if self.parent != None:
self.log = logging.getLogger('user_level_log')
else:
self.log = logging
self.experiment_transmission = None
def measure_fluorescence(self):
self.log.info('measuring fluorescence')
self.fast_shutter.open()
time.sleep(0.2)
self.detector.get_point()
self.fast_shutter.close()
def get_edge_energy(self):
self.log.info('get_edge_energy element %s edge %s' % (self.element, self.edge))
edge = self.edge.upper()
if edge[0] == 'L' and len(edge) == 1:
edge = 'L3'
edge_energy = McMaster[self.element]['edgeEnergies'][edge] * 1e3
return edge_energy
def get_alpha_energy(self):
return McMaster[self.element]['edgeEnergies']['%s-alpha' % self.edge.upper()[0]] * 1e3
def channel_from_energy(self, energy):
a, b, c = self.detector.get_calibration()
return (energy - a)/b
def energy_from_channel(self, channel):
return a + b*channel + c*channel**2
def get_peak_roi_start_end(self):
self.alpha_energy = self.get_alpha_energy()
roi_center = self.alpha_energy
roi_start = np.floor(self.channel_from_energy(roi_center - self.roi_width/2.))
roi_end = np.ceil(self.channel_from_energy(roi_center + self.roi_width/2.))
return roi_start, roi_end
def set_peak_roi(self, channel=0):
roi_start, roi_end = self.get_peak_roi_start_end()
self.detector.set_roi(roi_start, roi_end, channel=channel)
def get_compton_roi_start_end(self):
start_energy = self.get_start_energy()
end_energy = self.get_end_energy()
roi_start = np.floor(self.channel_from_energy(start_energy - self.roi_width/2.))
roi_end = np.ceil(self.channel_from_energy(end_energy + self.roi_width/2.))
return roi_start, roi_end
def set_rois(self):
p_start, p_end = self.get_peak_roi_start_end()
c_start, c_end = self.get_compton_roi_start_end()
self.detector.set_rois(p_start, p_end, c_start, c_end)
def adjust_transmission(self, high_dead_time=40):
self.log.info('adjust_transmission')
self.log.info('current dead_time %.2f' %self.detector.get_dead_time())
self.log.info('self.get_transmission() %.3f' % self.get_transmission())
if self.detector.get_dead_time() > high_dead_time:
self.high_boundary = self.current_transmission
self.new_transmission = self.current_transmission - (self.high_boundary - self.low_boundary)/2.
else:
self.low_boundary = self.current_transmission
if self.high_boundary == None:
self.new_transmission = 2 * self.current_transmission
else:
self.new_transmission = self.current_transmission + (self.high_boundary - self.low_boundary)/2.
self.current_transmission = self.new_transmission
self.log.info('set new transmission %.3f' % self.new_transmission)
self.set_transmission(self.new_transmission)
self.log.info('self.get_transmission() %.3f' % self.get_transmission())
def optimize_transmission(self, low_dead_time=10, high_dead_time=40, max_transmission=75, max_iterations=30):
self.current_transmission = self.transmission
self.log.info('current_transmission %.3f' % self.current_transmission)
self.log.info('self.get_transmission() %.3f' % self.get_transmission())
self.low_boundary = 0
self.high_boundary = None
k=0
self.measure_fluorescence()
while self.detector.get_dead_time() < low_dead_time or self.detector.get_dead_time() > high_dead_time:
self.adjust_transmission(high_dead_time)
if self.get_transmission() > max_transmission or k > max_iterations:
self.log.error('Transmission optimization did not converge. Exiting at %.2f%% after %d steps. Please check if the beam is actually getting on the sample.' % (self.get_transmission(), k))
break
self.measure_fluorescence()
k += 1
self.log.info('Transmission optimized after %d steps at %.1f percent' % (k, self.current_transmission))
def prepare(self):
_start = time.time()
self.log.info('prepare')
self.protective_cover.insert()
self.actuator.set_speed(self.default_speed)
self.check_directory(self.directory)
self.write_destination_namepattern(self.directory, self.name_pattern)
if self.transmission != None:
self.set_transmission(self.transmission)
if self.snapshot == True:
self.log.info('taking image')
self.camera.set_exposure()
self.camera.set_zoom(self.zoom)
self.goniometer.insert_backlight()
self.goniometer.extract_frontlight()
self.goniometer.set_position(self.reference_position)
self.goniometer.wait()
self.image = self.get_image()
self.rgbimage = self.get_rgbimage()
if self.safety_shutter.closed():
self.safety_shutter.open()
self.goniometer.set_data_collection_phase(wait=True)
self.detector.insert()
self.detector.set_integration_time(self.integration_time)
self.set_rois()
while time.time() - _start < self.insertion_timeout:
gevent.sleep(self.detector.sleeptime)
self.log.info('optimize? %s' % self.optimize)
if self.optimize == True:
self.attenuators.set_filter("07 Carbon 3mm")
edge_energy = self.get_edge_energy()
self.optimize_at_energy = edge_energy + self.edge_energy_optimize_offset
self.log.info('optimizing transmission at %.3f keV' % (self.optimize_at_energy/1.e3))
self.set_photon_energy(self.optimize_at_energy, wait=True)
self.optimize_transmission(high_dead_time=self.high_dead_time, low_dead_time=self.low_dead_time, max_transmission=self.max_transmission)
self.experiment_transmission = self.current_transmission
else:
self.experiment_transmission = self.transmission
self.set_transmission(self.transmission)
self.start_energy = self.get_start_energy()
message = 'self.start_energy %s' % self.start_energy
self.log.info(message)
print(message)
self.end_energy = self.get_end_energy()
message = 'self.end_energy %s' % self.end_energy
self.log.info(message)
print(message)
self.energy_motor.mono.simenergy = self.start_energy/1e3
angle_start = self.energy_motor.mono.simthetabragg
self.energy_motor.mono.simenergy = self.end_energy/1e3
angle_end = self.energy_motor.mono.simthetabragg
if self.shutterless == True:
self.scan_speed = abs(angle_end - angle_start)/self.total_time
self.log.info('shutterless scan_speed %s' % self.scan_speed)
if self.inverse == True:
self.start_energy, self.end_energy = self.end_energy, self.start_energy
self.log.info('moving to start energy %.3f' % self.start_energy)
self.set_photon_energy(self.start_energy, wait=True)
new_value_accepted = False
n_tries = 7
tried = 0
while not new_value_accepted:
tried += 1
try:
self.energy_motor.mono.energy = self.start_energy/1.e3
self.log.info('self.energy_motor.mono.energy = self.start_energy/1.e3 accepted on try no %d' % tried)
new_value_accepted = True
except:
self.energy_motor.turn_on()
gevent.sleep(0.2)
gevent.sleep(0.5)
self.actuator.wait()
self.energy_motor.wait()
if self.position != None:
self.goniometer.set_position(self.position)
else:
self.position = self.goniometer.get_position()
self.energy_motor.turn_on()
if self.shutterless == True and not self.use_flyscan:
self.actuator.set_speed(self.scan_speed)
elif self.use_flyscan:
self.flyscan.set_default_parameters()
self.flyscan.set_integration_time(self.integration_time)
self.flyscan.set_energy_start(self.start_energy)
self.flyscan.set_energy_end(self.end_energy)
def get_start_energy(self):
return self.get_edge_energy() - self.scan_range/2. + self.start_offset
def get_end_energy(self):
return self.get_start_energy() + self.scan_range
def get_progress(self):
total = abs(self.end_energy/1.e3 - self.start_energy/1.e3)
try:
passed = abs(self.actuator.get_energy(thetabragg=self.actuator.observations[-1][1]) - self.start_energy/1.e3)
except:
passed = 0
return int(100. * passed/total)
def get_point(self, start_time=None):
try:
if self.shutterless == True:
x = self.actuator.get_energy(thetabragg=self.actuator.observations[-1][1])
try:
normalized_counts = self.detector.observations[-1][3]
y = normalized_counts
except:
y = 0
else:
last_observation = self.shuttered_observations[-1]
x, y = last_observation[0], last_observation[4]
except:
self.log.info('get_point failed')
self.log.info(traceback.format_exc())
x, y = None, None
return x, y
def monitor(self, start_time=None):
self.log.info('energy_scan monitor start')
self.observations = []
self.observation_fields = ['chronos', 'progress', 'energy', 'mca']
last_point = [None, None, None, None]
while self.observe == True:
if start_time != None:
chronos = time.time() - start_time
else:
chronos = None
x, y = self.get_point(start_time)
progress = self.get_progress()
point = [chronos, progress, x, y]
self.observations.append(point)
if self.parent != None:
if point[1] != last_point[1] and point[2] != last_point[2] and progress > 0:
self.parent.emit('progressStep', (progress))
self.parent.emit('scanNewPoint', ((x < 1000 and x*1000.0 or x), y, ))
last_point = point
gevent.sleep(self.monitor_sleep_time)
def run(self):
#last_point = [None, None, None]
if self.shutterless == True and not self.use_flyscan:
self.fast_shutter.open()
self.actuator.wait()
self.energy_motor.wait()
self.energy_motor.mono.energy = self.end_energy/1.e3
while self.actuator.get_state() != 'STANDBY':
gevent.sleep(1.)
self.fast_shutter.close()
elif self.use_flyscan:
self.flyscan.run()
elif self.shutterless == False:
self.shuttered_observations = []
energies = np.linspace(self.start_energy/1.e3, self.end_energy/1.e3, int(1 + self.scan_range/self.scan_step))
k = 0
for energy in energies:
k += 1
self.energy_motor.mono.energy = energy
self.energy_motor.wait()
self.fast_shutter.open()
y = self.detector.get_single_observation()
self.fast_shutter.close()
x = self.actuator.get_energy(thetabragg=self.actuator.get_position())
self.shuttered_observations.append([x, y])
def clean(self):
self.log.info('clean')
self.end_time = time.time()
self.detector.extract()
self.attenuators.set_filter('00 None', wait=False)
self.actuator.set_speed(self.default_speed)
self.collect_parameters()
self.save_parameters()
self.save_log()
self.save_raw_scan()
self.save_all_observations()
self.save_raw_scan_plot()
def get_efs_filename(self):
return os.path.join(self.directory, '%s.efs' % self.name_pattern)
def get_raw_filename(self):
return os.path.join(self.directory, '%s.raw' % self.name_pattern)
def get_ps_filename(self):
return os.path.join(self.directory, '%s.ps' % self.name_pattern)
def get_png_filename(self):
return os.path.join(self.directory, '%s.png' % self.name_pattern)
def get_chooch_results_filename(self):
return os.path.join(self.directory, '%s_chooch_results.pickle' % self.name_pattern)
def get_all_observations_filename(self):
return os.path.join(self.directory, '%s_all_observations.pickle' % self.name_pattern)
def get_efs(self):
filename = self.get_efs_filename()
try:
f = open(filename)
data = f.read().split('\n')
efs = np.array([np.array(list(map(float, line.split()))) for line in data if len(line.split())==3])
except IOError:
efs = np.array([])
self.log.error('Chooch analysis failed, no efs file found.')
self.log.info('Most likely reason for chooch analysis to have failed is that the absorption edge could not be detected.')
self.log.info('Please verify that the element is really present by measuring the XRF spectrum.')
self.log.info('It is also possible that something else went wrong e.g. in the spectrum integration numerical error in the gnu scientific library integration routine, used by chooch internally, might have occured.')
self.log.info('If the absorption edge is present but analysis continues to resist, please call your local contact (tel. 8176) for more in-depth analysis of the problem.')
return efs
def get_raw_scan_plot_filename(self):
return os.path.join(self.directory, '%s_raw_scan.png' % (self.name_pattern))
def get_efs_plot_filename(self):
return os.path.join(self.directory, '%s_efs.png' % (self.name_pattern))
def parse_chooch_output(self, output):
self.log.info('parse_chooch_output')
try:
table = output[output.find('Table of results'):]
tabl = table.split('\n')
tab = np.array([ line.split('|') for line in tabl if line and line[0] == '|'])
self.log.info('tab %s' % tab)
self.pk = float(tab[1][2])
self.fppPeak = float(tab[1][3])
self.fpPeak = float(tab[1][4])
self.ip = float(tab[2][2])
self.fppInfl = float(tab[2][3])
self.fpInfl = float(tab[2][4])
self.efs = self.get_efs()
except:
self.pk = None
self.fppPeak = None
self.fpPeak = None
self.ip = None
self.fppInfl = None
self.fpInfl = None
self.efs = None
return {'pk': self.pk, 'fppPeak': self.fppPeak, 'fpPeak': self.fpPeak, 'ip': self.ip, 'fppInfl': self.fppInfl, 'fpInfl': self.fpInfl, 'efs': self.efs}
def analyze(self):
self.chooch_analysis()
self.save_efs_plot()
def chooch_analysis(self):
import subprocess
chooch_results = {}
chooch_parameters = {'element': self.element,
'edge': self.edge,
'raw_file': self.get_raw_filename(),
'output_ps': self.get_ps_filename(),
'output_png': self.get_png_filename(),
'output_efs': self.get_efs_filename()}
#chooch_command = 'chooch -p {output_ps} -o {output_efs} -e {element} -a {edge} {raw_file}'.format(**chooch_parameters)
chooch_command = 'chooch -p {output_ps} -g {output_png} -o {output_efs} -e {element} -a {edge} {raw_file}'.format(**chooch_parameters)
self.log.info('chooch_line %s' % chooch_command)
chooch_output = subprocess.getoutput(chooch_command)
chooch_results['chooch_output'] = chooch_output
self.log.info('chooch_output %s' % chooch_output)
chooch_results = self.parse_chooch_output(chooch_output)
chooch_results['chooch_results'] = chooch_results
f = open(self.get_chooch_results_filename(), 'wb')
pickle.dump(chooch_results, f)
f.close()
def get_theta_chronos_predictor(self):
all_observations = self.get_all_observations()
X = np.array(all_observations['actuator_monitor']['observations'])
chronos, thetabragg = X[:, 0], X[:, 1]
thetabragg_linear_fit = np.polyfit(chronos, thetabragg, 1)
theta_chronos_predictor = np.poly1d(thetabragg_linear_fit)
return theta_chronos_predictor
def get_mca_observations(self):
all_observations = self.get_all_observations()
if self.shutterless == True:
mca_observations = all_observations['mca']['observations']
mca_chronos = np.array([item[0] for item in mca_observations])
theta_chronos_predictor = self.get_theta_chronos_predictor()
mca_theta = theta_chronos_predictor(mca_chronos)
mca_wavelengths = self.resolution_motor.get_wavelength_from_theta(mca_theta)
mca_energies = self.resolution_motor.get_energy_from_wavelength(mca_wavelengths)
mca_normalized_counts = np.array([item[3] for item in mca_observations])
else:
mca_energies = np.array([observation[0] for observation in all_observations['shuttered_observations']])
mca_normalized_counts = np.array([observation[4] for observation in all_observations['shuttered_observations']])
if self.inverse == True:
mca_energies = mca_energies[::-1]
mca_normalized_counts = mca_normalized_counts[::-1]
return mca_energies, mca_normalized_counts
def get_spectrum(self, equidistant=False):
all_observations = self.get_all_observations()
mca_energies, mca_normalized_counts = self.get_mca_observations()
if equidistant == True:
energies = np.linspace(round(mca_energies.min()), round(mca_energies.max()), int(self.scan_range/self.scan_step + 1))
counts = np.interp(energies, mca_energies, mca_normalized_counts)
else:
enc = list(zip(mca_energies, mca_normalized_counts))
enc.sort(key=lambda x: x[0])
enc = np.array(enc)
energies = enc[:, 0]
counts = enc[:, 1]
if self.ignore_first_eV != 0.:
X = np.array([(e, c) for e, c in zip(energies, counts) if e>energies.min()+self.ignore_first_eV and e<energies.max()-self.ignore_last_eV])
energies = X[:,0]
counts = X[:,1]
return energies, counts
def get_all_observations(self):
self.log.info('get_all_observations')
if self.all_observations != None:
pass
elif os.path.isfile(self.get_all_observations_filename()):
self.all_observations = self.load_all_observations()
else:
self.log.info('get_all_observations gathering')
all_observations = {}
all_observations['actuator_monitor'] = {}
all_observations['actuator_monitor']['observation_fields'] = self.actuator.get_observation_fields()
all_observations['actuator_monitor']['observations'] = self.actuator.get_observations()
for monitor_name, mon in zip(self.monitor_names, self.monitors):
all_observations[monitor_name] = {}
all_observations[monitor_name]['observation_fields'] = mon.get_observation_fields()
all_observations[monitor_name]['observations'] = mon.get_observations()
if self.shutterless == False:
all_observations['shuttered_observations'] = self.shuttered_observations
self.all_observations = all_observations
return self.all_observations
def save_all_observations(self):
self.log.info('save_all_observations')
f = open(self.get_all_observations_filename(), 'wb')
pickle.dump(self.get_all_observations(), f)
f.close()
def load_all_observations(self):
return pickle.load(open(self.get_all_observations_filename(), 'rb'))
def stop(self):
self.stop_monitor()
self.actuator.stop()
self.fast_shutter.close()
self.actuator.set_speed(self.default_speed)
def save_raw_scan(self):
raw_filename = self.get_raw_filename()
energies, counts = self.get_spectrum(equidistant=self.equidistant_spectrum)
X = np.vstack([energies, counts]).T
header = '%s\n\n%d' % (self.description, X.shape[0])
np.savetxt(raw_filename, X, header=header, comments='#')
#if scipy.__version__ > '1.7.0':
#scipy.savetxt(raw_filename, X, header=header)
#else:
#f = open(raw_filename, 'w')
#f.write(header)
#scipy.savetxt(f, X)
#f.close()
def save_raw_scan_plot(self):
pylab.figure(figsize=(16, 9))
energies, counts = self.get_spectrum()
pylab.plot(energies, counts, 'go-')
pylab.xlabel('energy [eV]', fontsize=22)
pylab.ylabel('normalized counts', fontsize=22)
ax = pylab.gca()
pylab.text(0.05, 0.95, r'\# points %d' % len(energies), fontsize=22, transform=ax.transAxes)
pylab.title(self.description, fontsize=22)
pylab.grid(True)
pylab.savefig(self.get_raw_scan_plot_filename())
if self.display == True:
pylab.show()
def save_efs_plot(self):
efs = self.get_efs()
pylab.figure(figsize=(16, 9))
energies, counts = self.get_spectrum()
self.log.debug('efs %s' % efs)
e = efs[:,0]
fdp = efs[:,1]
fp = efs[:,2]
df = fdp - fp
gdf = np.gradient(df)
ip0 = e[np.argmin(fp)]
ip1 = e[np.argmax(gdf)]
ip2 = e[np.argmin(gdf)]
pk0 = e[np.argmax(fdp)]
pk2 = np.mean([ip1, ip2])
pylab.plot(e, fdp, 'k-', label=r'$f^{\prime\prime}$')
pylab.plot(e, fp, 'r-', label=r'$f^{\prime}$')
pylab.plot(e, df, 'g-', label=r'$\Delta f = f^{\prime\prime} - f^{\prime}$')
pylab.plot(e, gdf, label=r'$\Delta$ gradient')
pylab.vlines(ip0, fp.min()-1, fp.min()+1, colors='r', label=r'$f^{\prime}_{min}=%.2f$' % ip0)
pylab.vlines(ip1, df[e==ip1]-1, df[e==ip1]+1, colors='g', label=r'$\Delta f_{inf2} = %.2f$' % ip1 )
pylab.vlines(pk2, df.max()-1, df.max()+1, colors='g', label=r'$\Delta f_{max} = %.2f$' % pk2)
pylab.vlines(pk0, fdp.max()-1, fdp.max()+1, colors='k', label=r'$f^{\prime\prime}_{max}=%.2f$' % pk0)
pylab.vlines(ip2, df[e==ip2]-1, df[e==ip2]+1, colors='g', label=r'$\Delta f_{inf2} = %.2f$' % ip2)
pylab.xlabel('energy [eV]', fontsize=22)
pylab.ylabel(r'$f^{\prime}$ and $f^{\prime\prime}$ [electrons]', fontsize=22)
ax = pylab.gca()
pylab.text(0.05, 0.95, r'\# points %d' % len(energies), fontsize=22, transform=ax.transAxes)
pylab.title(self.description, fontsize=22)
pylab.grid(True)
pylab.legend(fontsize=18)
pylab.savefig(self.get_efs_plot_filename())
if self.display == True:
pylab.show()
def main():
usage = '''Program for energy scans
./energy_scan.py -e <element> -s <edge> <options>
'''
import optparse
parser = optparse.OptionParser(usage=usage)
parser.add_option('-e', '--element', type=str, help='Specify the element')
parser.add_option('-s', '--edge', type=str, help='Specify the edge')
parser.add_option('-d', '--directory', type=str, default='/tmp/testXanes', help='Directory to store the results (default=%default)')
parser.add_option('-n', '--name_pattern', type=str, default='escan', help='name_pattern')
parser.add_option('-i', '--integration_time', type=float, default=0.25, help='integration time (default=%default) in seconds')
parser.add_option('-o', '--optimize', action='store_true', help='optimize transmission')
parser.add_option('-D', '--display', action='store_true', help='display plot')
parser.add_option('-I', '--inverse', action='store_true', help='inverse scan')
parser.add_option('-A', '--analysis', action='store_true', help='perform analysis')
parser.add_option('-E', '--equidistant_spectrum', action='store_true', help='save raw scan with equidistant energies')
parser.add_option('-G', '--ignore_first_eV', type=float, default=0., help='ignore first part of the spectrum')
parser.add_option('-L', '--ignore_last_eV', type=float, default=0., help='ignore last part of the spectrum')
parser.add_option('-t', '--transmission', type=float, default=0.5, help='Default transmission')
parser.add_option('-T', '--total_time', type=float, default=100., help='total scan time (default=%default)')
parser.add_option('-r', '--scan_range', type=float, default=100., help='scan range (default=%default eV)')
parser.add_option('-f', '--use_flyscan', type=int, default=0, help='use flyscan')
options, args = parser.parse_args()
print('options', options)
print('args', args)
options.use_flyscan = bool(options.use_flyscan)
print('modified options', options)
escan = energy_scan(**vars(options))
filename = '%s_parameters.pickle' % escan.get_template()
if not os.path.isfile(filename):
escan.execute()
#pass
elif options.analysis == True:
escan.save_raw_scan()
escan.save_raw_scan_plot()
escan.chooch_analysis()
escan.save_efs_plot()
if __name__ == '__main__':
main()