-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdiffraction_tomography.py
executable file
·296 lines (255 loc) · 13.4 KB
/
diffraction_tomography.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import traceback
import logging
import time
import numpy as np
import copy
import os
import subprocess
import pickle
import re
import pylab
import sys
import gevent
from diffraction_experiment import diffraction_experiment
from goniometer import goniometer
from area import area
import scipy.ndimage as nd
from scipy.optimize import minimize
class diffraction_tomography(diffraction_experiment):
specific_parameter_fields = [{'name': 'scan_start_angles', 'type': 'list', 'description': ''},
{'name': 'vertical_range', 'type': 'bool', 'description': ''},
{'name': 'vertical_step_size', 'type': 'bool', 'description': ''},
{'name': 'reference_position', 'type': 'dict', 'description': ''}]
def __init__(self,
name_pattern='excenter_$id',
directory='/nfs/data2/excenter',
treatment_directory='/dev/shm',
scan_start_angles='[0, 90, 180, 225, 315]',
vertical_range=0.1,
horizontal_range=0,
scan_range=0.01,
vertical_step_size=0.002,
frame_time=0.005,
transmission=None,
position=None,
photon_energy=None,
resolution=None,
diagnostic=True,
analysis=True,
conclusion=True,
display=True,
method='xds',
dont_move_motors=False,
parent=None,
beware_of_top_up=False,
beware_of_download=False,
generate_cbf=True,
generate_h5=False):
if hasattr(self, 'parameter_fields'):
self.parameter_fields += diffraction_tomography.specific_parameter_fields
else:
self.parameter_fields = diffraction_tomography.specific_parameter_fields[:]
diffraction_experiment.__init__(self,
name_pattern,
directory,
transmission=transmission,
photon_energy=photon_energy,
resolution=resolution,
diagnostic=diagnostic,
analysis=analysis,
conclusion=conclusion,
parent=parent,
beware_of_top_up=beware_of_top_up,
beware_of_download=beware_of_download,
generate_cbf=generate_cbf,
generate_h5=generate_h5)
self.description = 'X-ray diffraction tomgraphy, Proxima 2A, SOLEIL, %s' % time.ctime(self.timestamp)
self.display = display
self.scan_start_angles = eval(scan_start_angles)
self.vertical_range = vertical_range
self.horizontal_range = horizontal_range
self.vertical_step_size = vertical_step_size
self.frame_time = frame_time
self.nimages = int(vertical_range/vertical_step_size)
self.scan_exposure_time = self.frame_time * self.nimages
self.scan_range = scan_range
self.ntrigger = len(self.scan_start_angles)
self.number_of_rows = int(vertical_range/vertical_step_size)
self.number_of_columns = 1
print('number_of_rows', self.number_of_rows)
print('number_of_columns', self.number_of_columns)
print('motor_speed', self.vertical_range/(self.number_of_rows * self.frame_time))
print('scan_range', scan_range)
if position == None:
self.reference_position = self.goniometer.get_aligned_position()
else:
self.reference_position = position
self.horizontal_center = self.reference_position['AlignmentY']
self.nimages_per_file = self.number_of_rows
self.scan_start_angle = self.scan_start_angles[0]
self.angle_per_frame = self.scan_range/self.nimages
self.image_nr_start = 1
self.treatment_directory = treatment_directory
self.format_dictionary = {'directory': self.directory, 'name_pattern': self.name_pattern, 'treatment_directory': self.treatment_directory}
self.line_scan_time = self.frame_time * self.number_of_rows
self.total_expected_exposure_time = self.line_scan_time * self.ntrigger
self.total_expected_wedges = self.ntrigger
self.overlap = 0.
def get_overlap(self):
return self.overlap
def get_helical_lines(self):
#start, stop, scan_start_angle, scan_range, scan_exposure_time
helical_lines = []
for scan_start_angle in self.scan_start_angles:
position = copy.copy(self.reference_position)
position_start = copy.copy(self.reference_position)
position_stop = copy.copy(self.reference_position)
position['Omega'] = scan_start_angle
position_start['Omega'] = scan_start_angle
position_stop['Omega'] = scan_start_angle
focus_center, vertical_center = self.goniometer.get_focus_and_vertical_from_position(position=position)
a = area(self.vertical_range, self.horizontal_range, self.number_of_rows, self.number_of_columns, vertical_center, self.horizontal_center)
grid, points = a.get_grid_and_points()
jumps = a.get_jump_sequence(grid.T)
collect_sequence = a.get_linearized_point_jumps(jumps, points)
for start, stop in collect_sequence:
x_start, y_start = self.goniometer.get_x_and_y(focus_center, start[0], scan_start_angle)
x_stop, y_stop = self.goniometer.get_x_and_y(focus_center, stop[0], scan_start_angle)
position_start['CentringX'] = x_start
position_start['CentringY'] = y_start
position_stop['CentringX'] = x_stop
position_stop['CentringY'] = y_stop
helical_lines.append([position_start, position_stop, scan_start_angle, self.scan_range, self.scan_exposure_time])
return helical_lines
def get_reference_position(self):
if os.path.isfile(self.get_parameters_filename()):
self.reference_position = self.load_parameters_from_file()['reference_position']
return self.reference_position
def run(self):
self._start = time.time()
self.md2_task_info = []
for helical_line in self.get_helical_lines():
start, stop, scan_start_angle, scan_range, scan_exposure_time = helical_line
task_id = self.goniometer.helical_scan(start, stop, scan_start_angle, scan_range, scan_exposure_time)
self.md2_task_info.append(self.goniometer.get_task_info(task_id))
def analyze(self, method='xds'):
if method=='dozor':
self.run_dozor(blocking=True)
elif method=='xds':
self.run_xds()
elif method=='dials':
self.run_dials()
def get_results(self, method='xds'):
self.logger.info('get_results, method %s' % method)
if method == 'dozor':
results = self.get_dozor_results()[:, 2]
print('results', results.shape, results[:10])
elif method == 'dials':
results = self.get_dials_results()
elif method == 'xds':
results = self.get_xds_results()
else:
results = []
return results
def get_result_position(self, threshold=0.25, min_spots=5, alignmenty_direction=-1., alignmentz_direction=1., centringx_direction=-1., centringy_direction=1., method='xds', geometric_center=True):
self.logger.info('get_result_position')
parameters = self.get_parameters()
results = self.get_results(method=method)
nimages = parameters['nimages']
angles = parameters['scan_start_angles']
vertical_displacements = []
#beam_position = 0.5 * (self.nimages-1.)
#print('beam_position', beam_position)
for k in range(parameters['ntrigger']):
line = results[k*nimages: (k+1)*nimages]
line[line<min_spots] = 0
line[line<=line.max()*threshold] = 0
if geometric_center:
line[line>0] = 1
y = nd.center_of_mass(line)[0]
print('center_of_mass', y)
#y -= beam_position
#print('position in steps', y)
#y *= parameters['vertical_step_size']
#print('shift in mm', y)
vertical_displacements.append(y)
angles_radians = np.radians(parameters['scan_start_angles'])
print('vertical_displacements', vertical_displacements)
vertical_displacements = np.array(vertical_displacements)
#vertical_displacements *= 1e3
initial_parameters = [np.mean(vertical_displacements), np.std(vertical_displacements), np.random.random()]
print('initial_parameters', initial_parameters)
fit_y = minimize(self.goniometer.circle_model_residual,
initial_parameters,
method='nelder-mead',
args=(angles_radians, vertical_displacements))
print('fit_y', fit_y)
c, r, alpha = fit_y.x
omega_axis_position = c
print('omega_axis_position', omega_axis_position)
omega_axis_shift = omega_axis_position - 0.5*nimages
print('estimated omega_axis_shift in px', omega_axis_shift)
print('estimated omega_axis_shift in mm', omega_axis_shift * parameters['vertical_step_size'])
#c *= parameters['vertical_step_size']
c = omega_axis_shift * parameters['vertical_step_size']
r *= parameters['vertical_step_size']
v = {'c': c, 'r': r, 'alpha': alpha}
print('c, r, alpha', c, r, alpha)
d_sampx = centringx_direction * r * np.sin(alpha)
d_sampy = centringy_direction * r * np.cos(alpha)
#d_y = alignmenty_direction * horizontal_center
d_z = alignmentz_direction * c
move_vector_dictionary = {'AlignmentZ': d_z,
#'AlignmentY': d_y,
'CentringX': d_sampx,
'CentringY': d_sampy}
print('move_vector', move_vector_dictionary)
result_position = {}
reference_position = self.get_reference_position()
for motor in reference_position:
result_position[motor] = reference_position[motor]
if motor in move_vector_dictionary:
result_position[motor] += move_vector_dictionary[motor]
print('reference_position', reference_position)
print('result_position', result_position)
return result_position
def run_shape_reconstruction(self):
os.system('/nfs/data2/Martin/Research/tomography/shape_from_diffraction_tomography.py -d %s -n %s -D &' % (self.directory, self.name_pattern))
def conclude(self, method='xds', move_motors=True):
self.logger.info('conclude')
self.run_shape_reconstruction()
result_position = self.get_result_position(method=method)
if move_motors:
self.logger.info('moving motors')
self.goniometer.set_position(result_position)
self.goniometer.save_position()
#os.system('excenter_finished_dialog.py &')
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-n', '--name_pattern', default='excenter_$id', type=str, help='Prefix')
parser.add_argument('-d', '--directory', default='/nfs/data2/excenter', type=str, help='Destination directory')
parser.add_argument('-a', '--scan_start_angles', default='[0, 90, 180, 225, 315]', type=str, help='angles')
parser.add_argument('-y', '--vertical_range', default=0.1, type=float, help='vertical range')
parser.add_argument('-f', '--frame_time', default=0.005, type=float, help='frame time')
parser.add_argument('-A', '--analysis', action='store_true', help='If set will perform automatic analysis.')
parser.add_argument('-C', '--conclusion', action='store_true', help='If set will move the motors upon analysis.')
parser.add_argument('-D', '--diagnostic', action='store_true', help='If set will record diagnostic information.')
parser.add_argument('-m', '--method', type=str, default='xds', help='analysis method')
parser.add_argument('-S', '--dont_move_motors', action='store_true', help='Do not move after conclusion')
parser.add_argument('-5', '--generate_h5', action='store_false', help='Do not generate h5 files')
options = parser.parse_args()
print('options', options)
print('vars(options)', vars(options))
experiment = diffraction_tomography(**vars(options))
print('get_parameters_filename', experiment.get_parameters_filename())
if not os.path.isfile(experiment.get_parameters_filename()):
experiment.execute()
elif options.analysis == True:
experiment.analyze(method=options.method)
if options.conclusion == True:
experiment.conclude(method=options.method, move_motors=not options.dont_move_motors)
if __name__ == '__main__':
main()