-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathchooch.py
executable file
·334 lines (268 loc) · 14.6 KB
/
chooch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
#!/usr/bin/env python
'''translating chooch to python to understand integration around singularity a bit better. '''
import numpy as np
from scipy.integrate import quad as integrate
import scipy.signal
import mucal
import pylab
import time
def get_cross_section(element, energy_keV):
energy, xsec, fluo = mucal.mucal(element, energy_keV)
return xsec[0]
def get_fpp(element, energy_keV):
return 143.10935e-10 * energy_keV * 1000.0 * get_cross_section(element, energy_keV)
def get_splinor(element, energy_keV):
return get_cross_section(element, energy_keV)
def savgol_win(fEdge, dE, fEres=0.00014):
fMonoRes = fEres * fEdge
print('fMonoRes', fMonoRes)
print('dE', dE)
nSavGolWin = int(fMonoRes/dE)
print('nSavGolWin', nSavGolWin)
if nSavGolWin % 2 == 0:
nSavGolWin += 1
print('nSavGolWin', nSavGolWin)
nSavGolWin = min([29, nSavGolWin])
nSavGolWin = max([11, nSavGolWin])
print('nSavGolWin', nSavGolWin)
print("dE = %f Resol = %f" % (dE, fMonoRes))
print("Savitsky-Golay window value = %d" % nSavGolWin)
return nSavGolWin
def normalize(fXraw, fYraw, below_edge_boundary, above_edge_boundary):
below_edge_linear_fit = np.poly1d(np.polyfit(fXraw[:below_edge_boundary], fYraw[:below_edge_boundary], 1))
above_edge_linear_fit = np.poly1d(np.polyfit(fXraw[above_edge_boundary:], fYraw[above_edge_boundary:], 1))
fYfitb = below_edge_linear_fit(fXraw)
fYfita = above_edge_linear_fit(fXraw)
fYnorm = (fYraw - fYfitb) / (fYfita - fYfitb)
return fYnorm
def get_theory_fpp(element, energy_keV):
if type(energy_keV) in [float, int]:
fpp = get_fpp(element, energy_keV)
else:
fpps = []
for item in energy_keV:
fpps.append(get_fpp(element, item))
fpp = np.array(fpps)
return fpp
def get_fYfpp(fXraw, fYnorm, element, below_edge_boundary, above_edge_boundary):
fYtheory = get_theory_fpp(element, fXraw/1.e3)
below_edge_theory_quadratic_fit = np.poly1d(np.polyfit(fXraw[:below_edge_boundary], fYtheory[:below_edge_boundary], 2))
above_edge_theory_quadratic_fit = np.poly1d(np.polyfit(fXraw[above_edge_boundary:], fYtheory[above_edge_boundary:], 2))
fYfitb = below_edge_theory_quadratic_fit(fXraw)
fYfita = above_edge_theory_quadratic_fit(fXraw)
fYfpp = fYnorm * (fYfita - fYfitb) + fYfitb
return fYfpp, fYtheory
def get_edge_boundaries(fXraw, fYraw, element):
peak = fXraw[np.argmax(fYraw)]
below = fXraw[fXraw < peak-7.].max()
above = fXraw[fXraw > peak+7.].min()
below_edge_boundary = list(fXraw).index(below)
above_edge_boundary = list(fXraw).index(above)
fEdge = mucal.k_edge[mucal.element.index(element)+1] * 1.e3
return below_edge_boundary, above_edge_boundary, fEdge
def integrand_extrapolate(E, E0, element):
return E*get_fpp(element, E/1.e3)/(E0**2 - E**2)
def integrand_intrapolate(E, E0, get_fpp_intrapolate):
return E*get_fpp_intrapolate(E)/(E0**2 - E**2)
def singularity(E, E0, get_fpp_intrapolate):
return -1.*get_fpp_intrapolate(E)/(E0+E)
def get_from_energy_extrapolate_low_to_first(energy, element, energy_extrapolate_low, energy_measured_first_point, subintervals):
#points = np.linspace(energy_extrapolate_low, energy_measured_first_point, 3)
#boundaries = zip(points[:-1], points[1:])
#return sum([integrate(integrand_extrapolate, l, h, args=(energy, element), limit=subintervals)[0] for l, h in boundaries]) * 2./np.pi
return integrate(integrand_extrapolate, energy_extrapolate_low, energy_measured_first_point, args=(energy, element), limit=subintervals)[0] * 2./np.pi
def get_from_first_to_singularity(energy_a, energy_measured_first_point, get_fpp_intrapolate, subintervals):
energy, a = energy_a
#points = np.linspace(energy_measured_first_point, a, 3)
#boundaries = zip(points[:-1], points[1:])
#return sum([integrate(integrand_intrapolate, l, h, args=(energy, get_fpp_intrapolate), limit=subintervals)[0] for l, h in boundaries]) * 2./np.pi
return integrate(integrand_intrapolate, energy_measured_first_point, a, args=(energy, get_fpp_intrapolate), limit=subintervals)[0] * 2./np.pi
def get_singularity_integral(energy_a_b, get_fpp_intrapolate, subintervals):
energy, a, b = energy_a_b
return integrate(singularity, a, b, args=(energy, get_fpp_intrapolate), limit=subintervals)[0]
def get_from_singularity_to_last(energy_b, energy_measured_last_point, get_fpp_intrapolate, subintervals):
energy, b = energy_b
#points = np.linspace(b, energy_measured_last_point, 3)
#boundaries = zip(points[:-1], points[1:])
#return sum([integrate(integrand_intrapolate, l, h, args=(energy, get_fpp_intrapolate), limit=subintervals)[0] for l, h in boundaries])* 2./np.pi
return integrate(integrand_intrapolate, b, energy_measured_last_point, args=(energy, get_fpp_intrapolate), limit=subintervals)[0] * 2./np.pi
def get_from_last_to_energy_extrapolate_high(energy, element, energy_measured_last_point, energy_extrapolate_high, subintervals):
#points = np.linspace(energy_measured_last_point, energy_extrapolate_high, 3)
#boundaries = zip(points[:-1], points[1:])
#return sum([integrate(integrand_extrapolate, l, h, args=(energy, element), limit=subintervals)[0] for l, h in boundaries]) * 2./np.pi
return integrate(integrand_extrapolate, energy_measured_last_point, energy_extrapolate_high, args=(energy, element), limit=subintervals)[0] * 2./np.pi
def calculate_integral(X, energy_extrapolate_low, energy_extrapolate_high, energy_measured_first_point, energy_measured_last_point, element, get_fpp_intrapolate, subintervals=50):
#X = [energy, fpp, fppd1, fppd2, fppd3, a, b, d1, d2]
#Exrapolate to low energy
ltf = time.time()
from_energy_extrapolate_low_to_first = np.apply_along_axis(get_from_energy_extrapolate_low_to_first, 1, X[:,[0,]], element, energy_extrapolate_low, energy_measured_first_point, subintervals)
print('from low to first took %.3f' % (time.time() - ltf))
#From first data point up to singularity energy-dE
fts = time.time()
from_first_to_singularity = np.apply_along_axis(get_from_first_to_singularity, 1, X[:,[0, 5]], energy_measured_first_point, get_fpp_intrapolate, subintervals)
print('from first to singularity took %.3f' % (time.time() - fts))
#Singularity
s = time.time()
at_singularity = np.apply_along_axis(get_singularity_integral, 1, X[:, [0, 5, 6]], get_fpp_intrapolate, subintervals)
at_singularity += -(np.log(np.abs(X[:,8])) - np.log(np.abs(X[:,7])))
at_singularity += -X[:,2] * (X[:,6] - X[:,5])
at_singularity += -X[:,3] * (X[:,8]**2 - X[:,7]**2)/4.
at_singularity += -X[:,4] * (X[:,8]**3 - X[:,7]**3)/18.
at_singularity /= np.pi
print('singularity took %.3f' % (time.time() - s))
#From singularity energy+dE up to last data point
stl = time.time()
from_sigularity_to_last = np.apply_along_axis(get_from_singularity_to_last, 1, X[:,[0, 6]], energy_measured_last_point, get_fpp_intrapolate, subintervals)
print('from singularity to last took %.3f' % (time.time() - stl))
#Extrapolate to high energy
lth = time.time()
from_last_to_energy_extrapolate_high = np.apply_along_axis(get_from_last_to_energy_extrapolate_high, 1, X[:,[0,]], element, energy_measured_last_point, energy_extrapolate_high, subintervals)
print('last to high took %.3f' % (time.time() - lth))
fYfp = from_energy_extrapolate_low_to_first + \
from_first_to_singularity + \
at_singularity + \
from_sigularity_to_last + \
from_last_to_energy_extrapolate_high
return fYfp
def calculate_integral_for_a_single_point(i, E0, fXraw, fElo, fEhi, fYfpps, fYderiv1, fYderiv2, fYderiv3, element, get_fpp_intrapolate, dE=0.01, subintervals=50):
a = E0-dE
b = E0+dE
d1 = a-E0
d2 = b-E0
#Exrapolate to low energy
I_low = integrate(integrand_extrapolate, fElo, fXraw[0], args=(E0, element), limit=subintervals)[0]
from_fElo_to_first = I_low * 2./np.pi
#From first data point up to singularity E0-dE
from_first_to_singularity = integrate(integrand_intrapolate, fXraw[0], E0-dE, args=(E0, get_fpp_intrapolate), limit=subintervals)[0] * 2./np.pi
#Singularity
at_singularity = integrate(singularity, a, b, args=(E0, get_fpp_intrapolate), limit=subintervals)[0]
at_singularity += -(np.log(np.abs(d2)) - np.log(np.abs(d1)))
at_singularity += -fYderiv1[i]*(b-a)
at_singularity += -fYderiv2[i]*(d2**2 - d1**2)/4.
at_singularity += -fYderiv3[i]*(d2**3 - d1**3)/18.
at_singularity /= np.pi
#From singularity E0+dE up to last data point
from_sigularity_to_last = integrate(integrand_intrapolate, E0+dE, fXraw[-1], args=(E0, get_fpp_intrapolate), limit=subintervals)[0] * 2./np.pi
#Extrapolate to high energy
from_last_to_fEhi = integrate(integrand_extrapolate, fXraw[-1], fEhi, args=(E0, element), limit=subintervals)[0] * 2./np.pi
#from_last_to_fEhi = 0.
fYfp = from_fElo_to_first + \
from_first_to_singularity + \
at_singularity + \
from_sigularity_to_last + \
from_last_to_fEhi
return fYfp
def load_spectrum(sFilename, limit=100):
spectrum = np.loadtxt(sFilename, skiprows=2)
fXraw = spectrum[:, 0]
fYraw = spectrum[:, 1]
return fXraw, fYraw
def chooch(sFilename, element, edge):
start = time.time()
#load specrum
fXraw, fYraw = load_spectrum(sFilename)
#pylab.figure()
#pylab.title('Raw spectrum')
#pylab.plot(fXraw, fYraw)
#pylab.xlabel('energy [eV]')
#pylab.ylabel('raw scpetrum [a.u.]')
#pylab.show()
#check input for common errors
dE = np.min(fXraw[1:] - fXraw[:-1])
#determine edge
below_edge_boundary, above_edge_boundary, fEdge = get_edge_boundaries(fXraw, fYraw, element)
print('below_edge_boundary', below_edge_boundary)
print('above_edge_boundary', above_edge_boundary)
print('fEdge', fEdge)
print('dE', dE)
#Normalize data
fYnorm = normalize(fXraw, fYraw, below_edge_boundary, above_edge_boundary)
#pylab.figure()
#pylab.title('Normalized spectrum')
#pylab.plot(fXraw, fYnorm)
#pylab.xlabel('energy [eV]')
#pylab.ylabel('normalized fluorescence [a.u.]')
#pylab.show()
#Convert spectrum to f''
fYfpp, fYtheory = get_fYfpp(fXraw, fYnorm, element, below_edge_boundary, above_edge_boundary)
#pylab.figure()
#pylab.title('Spectrum converted to f"')
#pylab.plot(fXraw, fYfpp, label='observation')
#pylab.plot(fXraw, fYtheory, label='theory')
#pylab.xlabel('energy [eV]')
#pylab.ylabel('f'' [e]')
#pylab.legend()
#pylab.show()
#determine Savitzky-Golay window
nSavGolWin = savgol_win(fEdge, dE)
print('nSavGolWin', nSavGolWin)
fYfpps = scipy.signal.savgol_filter(fYfpp, nSavGolWin, 4, deriv=0)
fYderiv1 = scipy.signal.savgol_filter(fYfpp, nSavGolWin, 4, deriv=1)
fYderiv2 = scipy.signal.savgol_filter(fYfpp, nSavGolWin, 4, deriv=2)
fYderiv3 = scipy.signal.savgol_filter(fYfpp, nSavGolWin, 4, deriv=3)
#pylab.figure()
#pylab.title('Savitzky-Golay filtered spectrum and its first three derivatives')
#pylab.plot(fYfpps, label='fYfpps')
#pylab.plot(fYderiv1, label='fYderiv1')
#pylab.plot(fYderiv2, label='fYderiv2')
#pylab.plot(fYderiv3, label='fYderiv3')
#pylab.legend()
#pylab.show()
get_fpp_intrapolate = scipy.interpolate.interp1d(fXraw, fYfpps, kind='linear', fill_value='extrapolate')
#Perform Kramer-Kroning transform
dE = 0.01
fElo = fEdge/1.e3
fEhi = fEdge*50.
#fYfp = scipy.integrate.quad(kramers_kronig_integrand, fElo, fXraw[0])
a = fXraw - dE
b = fXraw + dE
d1 = a - fXraw
d2 = b - fXraw
X = np.vstack([fXraw, fYfpps, fYderiv1, fYderiv2, fYderiv3, a, b, d1, d2]).T
print('time until integration %.3f' % (time.time() - start))
start = time.time()
fYfpx = calculate_integral(X, fElo, fEhi, fXraw[0], fXraw[-1], element, get_fpp_intrapolate, subintervals=35)
end = time.time()
print('integration1 took %.3f seconds' % (end-start))
#start = time.time()
#fYfp = []
#for i, energy in enumerate(fXraw):
#integral = calculate_integral_for_a_single_point(i, energy, fXraw, fElo, fEhi, fYfpps, fYderiv1, fYderiv2, fYderiv3, element, get_fpp_intrapolate, dE=0.01)
#fYfp.append(integral)
#end = time.time()
#print('integration2 took %.3f seconds' % (end-start))
pylab.figure()
pylab.title("f'' and f'")
#pylab.plot(fXraw, fYfp, label='fYfp')
pylab.plot(fXraw, fYfpx, label='fYfpx')
pylab.plot(fXraw, fYfpps, label='fYfpp')
#pylab.plot(fXraw, get_fpp_intrapolate(fXraw), label='spline')
pylab.xlabel('energy [eV]')
pylab.ylabel("f' and f'' [electrons]")
pylab.legend()
pylab.show()
if __name__ == '__main__':
import optparse
usage='''Usage: chooch.py -e <element> <filename>\n
Try chooch -h to show all options\n'''
parser = optparse.OptionParser(usage=usage)
parser.add_option('-s', '--spectrum', type=str, help='Spectrum in .raw format')
parser.add_option('-e', '--element', default=None, type=str, help='Atomic element')
parser.add_option('-a', '--edge', default=None, type=str, help='Absorption edge entered but will be auto-determined anyway')
parser.add_option('-r', default=None, type=float, help='Energy resolution')
parser.add_option('-k', action='store_true', help='Input data will be converted from keV to eV')
parser.add_option('-x', action='store_true', help='display graphics window')
parser.add_option('-o', default=None, type=str, help='Output file name')
parser.add_option('-i', action='store_true', help='plot in window')
parser.add_option('-p', default=None, type=str, help='PS output file')
parser.add_option('-g', default=None, type=str, help='PNG output file')
parser.add_option('-v', default=None, type=int, help='Verbosity level' )
parser.add_option('-1', default=None, type=float, help='Below edge fit lower limit')
parser.add_option('-2', default=None, type=float, help='Below edge fit upper limit')
parser.add_option('-3', default=None, type=float, help='Above edge fit lower limit')
parser.add_option('-4', default=None, type=float, help='Above edge fit upper limit')
parser.add_option('-d', action='store_true', help='Dump data file for pooch')
parser.add_option('-z', action='store_true', help='Output splinor file for raddose')
parser.add_option('-f', default=None, type=str, help='return anom. scattering factors for RemE')
options, args = parser.parse_args()
chooch(options.spectrum, options.element, options.edge)