-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbeam_center.py
executable file
·278 lines (206 loc) · 10.8 KB
/
beam_center.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
Object calculates the position of direct beam on the detector as function of distance of the wavelength and position of the detector support translational motors
'''
import logging
from detector import detector
from energy import energy
import numpy as np
class beam_center_mockup:
def __init__(self):
self.beam_center_x = 1500
self.beam_center_y = 1600
self.pixel_size = 75e-6
def get_beam_center(self):
return self.beam_center_x, self.beam_center_y
def get_beam_center_x(self):
return self.beam_center_x
def get_beam_center_y(self):
return self.beam_center_y
def get_theoric_beam_center(self, distance, wavelength, tx=36.0, tz=-19.65):
coef = np.array([[-107.48524431, -1.61648582, 0.63448967],
[ 4.19204684, -1.25690816, 2.58600155]]).T
intercept = np.array([ 1634.36239262, 1583.7138641])
q = 0.075
tx -= 36.0
tz -= -19.65
X = np.array([distance, wavelength, wavelength**2])
return np.dot(X, coef) + intercept + np.array([tx, tz])/q
def get_detector_distance(self):
return 100
class beam_center(object):
def __init__(self, pixel_size=0.075):
try:
self.wavelength_motor = energy()
self.detector = detector()
except:
pass
self.pixel_size = pixel_size
def get_beam_center_x(self, X):
logging.info('beam_center_x calculation')
beam_center_vertical = self.get_beam_center()[0]
return beam_center_vertical
def get_beam_center_y(self, X):
logging.info('beam_center_y calculation')
beam_center_horizontal = self.get_beam_center()[1]
return beam_center_horizontal
#def get_beam_center(self):
# 2017-07-22 After tomography experiment; Modeling tx and tz explicitly
#coef = np.array([[ -1.10004820e-01, 1.33236212e+01, -1.46088461e-02, -6.30332471e+00, 2.05455735e+00],
#[ 3.42366488e-03, 5.55270943e-03, 1.33149106e+01, -2.28146910e+00, 2.87948678e+00]]).T
#intercept = np.array([ 1166.84721073, 1256.11220109])
#wavelength = self.wavelength_motor.read_attribute('lambda').value
#ts = self.distance_motor.read_attribute('position').value
#tx = self.det_mt_tx.read_attribute('position').value
#tz = self.det_mt_tz.read_attribute('position').value
#X = np.array([ts, tx, tz, wavelength, wavelength**2])
#return np.dot(X, coef) + intercept
def get_beamstop_position(self, wavelength=None, ts=None, tx=None, tz=None, ts_offset=0, tx_offset=20.5, tz_offset=46.5, beam_center_x_reference=1432.09, beam_center_y_reference=1731.95):
beam_center_x, beam_center_y = self.get_beam_center(wavelength=wavelength, ts=ts, tx=tx, tz=tz, ts_offset=ts_offset, tx_offset=tx_offset, tz_offset=tz_offset)
beamstop_x = -(beam_center_x - beam_center_x_reference)*self.pixel_size
beamstop_y = -(beam_center_y - beam_center_y_reference)*self.pixel_size
if tx == None:
tx = self.detector.position.tx.get_position()
beamstop_x -= tx - tx_offset
return beamstop_x, beamstop_y
def get_beam_center(self, wavelength=None, ts=None, tx=None, tz=None, ts_offset=0, tx_offset=20.5, tz_offset=46.5):
# 2017-07-22 after tomography experiment focussing geometry changes
# Not modeling tx and tz explicitly
#coef = np.array([[-0.11502292, -0.89947339, 0.2325305 ],
#[ 0.00351967, -0.60952873, 2.22645446]]).T
#intercept = np.array([ 1449.1722701, 1510.20208357]) - np.array([ 2.58, 0.31])
# 2017-08-31
# 220
#coef = np.array([[-0.11118513, -3.68898678, 1.22657328],
#[ 0.00413426, -1.01159419, 2.40788137]]).T
#intercept = np.array([ 1450.04096305, 1509.55992981])
# 68
#coef = np.array([[-0.1111972, -2.96418675, 0.94843247],
#[ 0.00395438 -2.27778223 2.92793563]]).T
#intercept = np.array([ 1449.62923794, 1510.29356759])
# 118
#coef = np.array([[-0.11119599, -3.42681679, 1.10552128],
#[ 0.00397335, -3.6318981, 3.42825926]]).T
#intercept = np.array([1449.92271935, 1511.13875886])
# 2017-08-31 beam_center3
#coef = np.array([[ -1.07784484e-01, -3.80411705e+00, 1.27896512e+00],
#[ 3.14271272e-03, -2.37131414e+00, 2.89300818e+00]]).T
#intercept = np.array([ 1450.07192347, 1510.35162089])
# 2017-09-13 1M prediction
#tx_offset = 19.0
#tz_offset = 135.0
#coef = np.array([[-0.10702542, 3.06434418, -1.11765958],
#[ 0.00354367, 3.3434966, 0.78202923]]).T
#intercept = np.array([ 488.95185709, 452.32962912])
# 2017-09-19
# tx_offset = 20.3
# tz_offset = 20.5
# coef = np.array([[-0.10779414, -2.59970090, 0.8257945 ],
# [ 0.00380687, -2.07844815, 2.76835243]]).T
#
# intercept = np.array([ 1462.95205539, 1497.0729601 ])
# 2017-11-08
# tx_offset = 20.50
# tz_offset = 44.50
#coef = np.array([[ -1.06708151e-01, -2.85800345e+00, 9.87774089e-01],
#[ 2.61584487e-03, -7.09149543e-01, 2.18903245e+00]]).T
#intercept = np.array([ 1478.04730873, 1728.45302422])
# 2017-11-23
#coef = np.array([[-0.10596661, -1.72860865, 0.53923195],
#[ 0.00291639, -1.38650557, 2.4999531 ]]).T
#intercept = np.array([ 1477.45980118, 1728.69652014])
# 2017-12-14
#coef = np.array([[-0.1108826, -1.06395447, 0.27716588],
#[ 0.00414124, -1.58808647, 2.69409456]]).T
#intercept = np.array([ 1477.06896683, 1728.40462094])
# 2017-12-17 ts_offset=0, tx_offset=20.5, tz_offset=44.5
#coef = np.array([[-0.11034, -0.85557917, 0.25766557],
#[ 0.00514605, -1.2018129, 2.42307962]]).T
#intercept = np.array([ 1476.81628958, 1728.71530404])
# 2019-09-16 ts_offset=0, tx_offset=20.5, tz_offset=46.5
coef = np.array([[-0.10803942, -1.58868791, 0.53607582],
[ 0.00534036, -0.95457896, 2.31875217]]).T
print('coef', coef)
#intercept = np.array([1476.5555115464613, 1755.3498075722898])
# 2022-02
#intercept = np.array([1475.0555115464613, 1755.3498075722898])
# 2022-04-20
intercept = np.array([1475.0555115464613+2.52, 1755.3498075722898])
print('intercept', intercept)
if wavelength == None:
wavelength = self.wavelength_motor.get_wavelength()
if ts == None:
ts = self.detector.position.ts.get_position()
if tx == None:
tx = self.detector.position.tx.get_position()
if tz == None:
tz = self.detector.position.tz.get_position()
ts -= ts_offset
tx -= tx_offset
tz -= tz_offset
print('ts, tx, tz', ts, tx, tz)
X = np.array([ts, wavelength, wavelength**2])
print('X', X)
_beam_center = np.dot(X, coef) + intercept + np.array([tx, tz])/self.pixel_size
print('_beam_center 1', _beam_center)
try:
if self.detector.get_roi_mode() == '4M':
_beam_center[0] -= 550
except:
pass
print('_beam_center', _beam_center)
return _beam_center
def get_theoric_beam_center(self, distance, wavelength, tx=36.0, tz=-19.65, tx_offset=20.5, tz_offset=46.5, q=0.075):
#coef = np.array([[-110.49463429, -3.49210741, 1.3543519],
#[ 2.08750452, -3.20462697, 3.61623166]]).T
#intercept = np.array([ 1510.13453675, 1526.25811839])
# 2019-09-16 ts_offset=0, tx_offset=20.5, tz_offset=46.5
coef = np.array([[-0.10803942, -1.58868791, 0.53607582],
[ 0.00534036, -0.95457896, 2.31875217]]).T
#intercept = np.array([1476.5555115464613, 1755.3498075722898])
intercept = np.array([1475.0555115464613, 1755.3498075722898])
tx -= tx_offset
tz -= tz_offset
X = np.array([distance, wavelength, wavelength**2])
return np.dot(X, coef) + intercept + np.array([tx, tz])/q
def get_old_beam_center(self):
#Theta = np.matrix([[ 1.54776707e+03, 1.65113065e+03], [ 3.65108709e-01, 5.63662370e+00], [ -1.12769165e-01, 3.49706731e-03]])
#X = np.matrix([1., self.wavelength_motor.read_attribute('lambda').value, self.distance_motor.position])
#X = X.T
#beam_center = Theta.T * X
#beam_center_x = beam_center[0, 0]
#beam_center_y = beam_center[1, 0]
#beam_center_x -= 26.9
#beam_center_y -= 5.7
q = 0.075 #0.102592
wavelength = self.wavelength_motor.get_wavelength()
distance = self.detector.position.ts.get_position()
tx = self.detector.position.tx.get_position() - 30.0
tz = self.detector.position.tz.get_position() + 14.3
#logging.info('wavelength %s' % wavelength)
#logging.info('mt_ts %s' % distance)
#logging.info('mt_tx %s' % tx)
#logging.info('mt_tz %s' % tz)
#wavelength = self.mono1.read_attribute('lambda').value
#distance = self.detector_mt_ts.read_attribute('position').value
#tx = self.detector_mt_tx.position
#tz = self.detector_mt_tz.position
X = np.matrix([1., wavelength, distance, 0, 0 ]) #tx, tz])
beam_center_y = self.get_beam_center_x(X[:, [0, 1, 2, 4]])
beam_center_x = self.get_beam_center_y(X[:, [0, 1, 2, 3]])
beam_center_x += tx / q
beam_center_y += tz / q
beam_center_x += 0.58
beam_center_y += -1.36
#2016-09-06 adjusting table
beam_center_x += -16.3
beam_center_y += 2.0
#2016-09-07 adjusting table
#ORGX= 1534.19470215 ORGY= 1652.97814941
#1544.05 1652.87
beam_center_x += 10.15
#beam_center_y += 2.0
return beam_center_x, beam_center_y
def get_detector_distance(self):
return self.detector.ts.get_position()